Controllable gradient item retrieval

Haonan Wang, Chang Zhou, Carl Yang, Hongxia Yang, Jingrui He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we identify and study an important problem of gradient item retrieval. We define the problem as retrieving a sequence of items with a gradual change on a certain attribute, given a reference item and a modification text. For example, after a customer saw a white dress, she/he wants to buy a similar one but more floral on it. The extent of "more floral"is subjective, thus prompting one floral dress is hard to satisfy the customer's needs. A better way is to present a sequence of products with increasingly floral attributes based on the white dress, and allow the customer to select the most satisfactory one from the sequence. Existing item retrieval methods mainly focus on whether the target items appear at the top of the retrieved sequence, but ignore the demand for retrieving a sequence of products with gradual change on a certain attribute. To deal with this problem, we propose a weakly-supervised method that can learn a disentangled item representation from user-item interaction data and ground the semantic meaning of attributes to dimensions of the item representation. Our method takes a reference item and a modification as a query. During inference, we start from the reference item and "walk"along the direction of the modification in the item representation space to retrieve a sequence of items in a gradient manner. We demonstrate our proposed method can achieve disentanglement through weak supervision. Besides, we empirically show that an item sequence retrieved by our method is gradually changed on an indicated attribute and, in the item retrieval task, our method outperforms existing approaches on three different datasets.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021
PublisherAssociation for Computing Machinery
Pages768-777
Number of pages10
ISBN (Electronic)9781450383127
DOIs
StatePublished - Apr 19 2021
Externally publishedYes
Event2021 World Wide Web Conference, WWW 2021 - Ljubljana, Slovenia
Duration: Apr 19 2021Apr 23 2021

Publication series

NameThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021

Conference

Conference2021 World Wide Web Conference, WWW 2021
Country/TerritorySlovenia
CityLjubljana
Period4/19/214/23/21

Keywords

  • Disentangled representation learning
  • Information retrieval
  • Recommendation system
  • Variational autoencoder
  • Weakly-supervised learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Controllable gradient item retrieval'. Together they form a unique fingerprint.

Cite this