Abstract
We present a paradigm which prescribes a procedure for a systematic design, analysis and development of nanopositioning devices. In this effort, we have used many tools from modern control theory to model devices, to quantify device resolution, bandwidth, range, and robustness, and to tackle undesirable nonlinear effects such as hysteresis and creep. The implementation of this procedure for the simultaneous achievement of robustness, high precision, and high bandwidth objectives is presented. Emphasis is placed on the robustness aspects that make the nanopositioner operable in diverse operating conditions thus alleviating the need for tuning that is present in existing designs. The merits of the paradigm are demonstrated through experimental results.
Original language | English (US) |
---|---|
Pages (from-to) | 2644-2649 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 3 |
State | Published - 2003 |
Externally published | Yes |
Event | 42nd IEEE Conference on Decision and Control - Maui, HI, United States Duration: Dec 9 2003 → Dec 12 2003 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization