TY - GEN

T1 - Control of large vehicular platoons

T2 - 2007 American Control Conference, ACC

AU - Barooah, Prabir

AU - Mehta, Prashant G.

AU - Hespanha, João P.

PY - 2007

Y1 - 2007

N2 - We consider decentralized control of a platoon of N identical vehicles moving in a straight line following a single lead vehicle moving at constant velocity. The control objective is for each vehicle to maintain the velocity of the leader and inter-vehicular separation using only the local information from itself and its two nearest neighbors. Each vehicle is modeled as a double integrator. To aid the analysis, we derive a continuous partial differential equation (PDE) approximation of the discrete platoon dynamics. The PDE model is used to explain the progressive loss of closed-loop stability with increasing number of vehicles, and to devise ways to combat this loss of stability. If every vehicle uses the same controller, we show that the least stable closed-loop eigenvalue approaches zero as O(1/N2) in the limit of a large number (N) of vehicles. We then show how to ameliorate this loss of stability by small amounts of "mistuning", i.e., changing the controller gains from their nominal values. We prove that with arbitrary small amounts of mistuning, the asymptotic behavior of the least stable closed loop eigenvalue can be improved to O(1/N). These conclusions are validated for the discrete platoon via numerical calculations.

AB - We consider decentralized control of a platoon of N identical vehicles moving in a straight line following a single lead vehicle moving at constant velocity. The control objective is for each vehicle to maintain the velocity of the leader and inter-vehicular separation using only the local information from itself and its two nearest neighbors. Each vehicle is modeled as a double integrator. To aid the analysis, we derive a continuous partial differential equation (PDE) approximation of the discrete platoon dynamics. The PDE model is used to explain the progressive loss of closed-loop stability with increasing number of vehicles, and to devise ways to combat this loss of stability. If every vehicle uses the same controller, we show that the least stable closed-loop eigenvalue approaches zero as O(1/N2) in the limit of a large number (N) of vehicles. We then show how to ameliorate this loss of stability by small amounts of "mistuning", i.e., changing the controller gains from their nominal values. We prove that with arbitrary small amounts of mistuning, the asymptotic behavior of the least stable closed loop eigenvalue can be improved to O(1/N). These conclusions are validated for the discrete platoon via numerical calculations.

UR - http://www.scopus.com/inward/record.url?scp=46449123741&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=46449123741&partnerID=8YFLogxK

U2 - 10.1109/ACC.2007.4282756

DO - 10.1109/ACC.2007.4282756

M3 - Conference contribution

AN - SCOPUS:46449123741

SN - 1424409888

SN - 9781424409884

T3 - Proceedings of the American Control Conference

SP - 4666

EP - 4671

BT - Proceedings of the 2007 American Control Conference, ACC

Y2 - 9 July 2007 through 13 July 2007

ER -