Control- & Task-Aware Optimal Design of Actuation System for Legged Robots Using Binary Integer Linear Programming

Youngwoo Sim, Guillermo Colin, Joao Ramos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Athletic robots demand a whole-body actuation system design that utilizes motors up to the boundaries of their performance. However, creating such robots poses challenges of integrating design principles and reasoning of practical design choices. This paper presents a design framework that guides designers to find optimal design choices to create an actuation system that can rapidly generate torques and velocities required to achieve a given set of tasks, by minimizing inertia and leveraging cooperation between actuators. The framework serves as an interactive tool for designers who are in charge of providing design rules and candidate components such as motors, reduction mechanism, and coupling mechanisms between actuators and joints. A binary integer linear optimization explores design combinations to find optimal components that can achieve a set of tasks. The framework is demonstrated with 200 optimal design studies of a biped with 5-degree-of-freedom (DoF) legs, focusing on the effect of achieving multiple tasks (walking, lifting), constraining the mass budget of all motors in the system and the use of coupling mechanisms. The result provides a comprehensive view of how design choices and rules affect reflected inertia, copper loss of motors, and force capability of optimal actuation systems.

Original languageEnglish (US)
Title of host publication2023 IEEE-RAS 22nd International Conference on Humanoid Robots, Humanoids 2023
PublisherIEEE Computer Society
ISBN (Electronic)9798350303278
DOIs
StatePublished - 2023
Event22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023 - Austin, United States
Duration: Dec 12 2023Dec 14 2023

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023
Country/TerritoryUnited States
CityAustin
Period12/12/2312/14/23

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Human-Computer Interaction
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Control- & Task-Aware Optimal Design of Actuation System for Legged Robots Using Binary Integer Linear Programming'. Together they form a unique fingerprint.

Cite this