TY - JOUR
T1 - Continuity of eigenvalues of subordinate processes in domains
AU - Chen, Zhen Qing
AU - Song, Renming
PY - 2006/1
Y1 - 2006/1
N2 - Let X = {Xt, t ≥ 0} be a symmetric Markov process in a state space E and D an open set of E. Let S(n) = {St( n), t ≥ 0} be a subordinator with Laplace exponent φn and S = {St, t ≥ 0} a subordinator with Laplace exponent φ. Suppose that X is independent of S and S ( n ). In this paper we consider the subordinate processes [InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.] and their subprocesses [InlineMediaObject not available: see fulltext.] and Xφn, D killed upon leaving D. Suppose that the spectra of the semigroups of [InlineMediaObject not available: see fulltext.] and Xφ, D are all discrete, with [InlineMediaObject not available: see fulltext.] being the eigenvalues of the generator of [InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.] being the eigenvalues of the generator of Xφ, D. We show that, if lim n →∞ φn (λ)=φ (λ) for every λ>0, then [InlineMediaObject not available: see fulltext.].
AB - Let X = {Xt, t ≥ 0} be a symmetric Markov process in a state space E and D an open set of E. Let S(n) = {St( n), t ≥ 0} be a subordinator with Laplace exponent φn and S = {St, t ≥ 0} a subordinator with Laplace exponent φ. Suppose that X is independent of S and S ( n ). In this paper we consider the subordinate processes [InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.] and their subprocesses [InlineMediaObject not available: see fulltext.] and Xφn, D killed upon leaving D. Suppose that the spectra of the semigroups of [InlineMediaObject not available: see fulltext.] and Xφ, D are all discrete, with [InlineMediaObject not available: see fulltext.] being the eigenvalues of the generator of [InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.] being the eigenvalues of the generator of Xφ, D. We show that, if lim n →∞ φn (λ)=φ (λ) for every λ>0, then [InlineMediaObject not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=28144449119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=28144449119&partnerID=8YFLogxK
U2 - 10.1007/s00209-005-0845-2
DO - 10.1007/s00209-005-0845-2
M3 - Article
AN - SCOPUS:28144449119
SN - 0025-5874
VL - 252
SP - 71
EP - 89
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
IS - 1
ER -