Continual Learning with Evolving Class Ontologies

Zhiqiu Lin, Deepak Pathak, Yu Xiong Wang, Deva Ramanan, Shu Kong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Lifelong learners must recognize concept vocabularies that evolve over time. A common yet underexplored scenario is learning with class labels that continually refine/expand old classes. For example, humans learn to recognize dog before dog breeds. In practical settings, dataset versioning often introduces refinement to ontologies, such as autonomous vehicle benchmarks that refine a previous vehicle class into school-bus as autonomous operations expand to new cities. This paper formalizes a protocol for studying the problem of Learning with Evolving Class Ontology (LECO). LECO requires learning classifiers in distinct time periods (TPs); each TP introduces a new ontology of “fine” labels that refines old ontologies of “coarse” labels (e.g., dog breeds that refine the previous dog). LECO explores such questions as whether to annotate new data or relabel the old, how to exploit coarse labels, and whether to finetune the previous TP's model or train from scratch. To answer these questions, we leverage insights from related problems such as class-incremental learning. We validate them under the LECO protocol through the lens of image classification (on CIFAR and iNaturalist) and semantic segmentation (on Mapillary). Extensive experiments lead to some surprising conclusions; while the current status quo in the field is to relabel existing datasets with new class ontologies (such as COCO-to-LVIS or Mapillary1.2-to-2.0), LECO demonstrates that a far better strategy is to annotate new data with the new ontology. However, this produces an aggregate dataset with inconsistent old-vs-new labels, complicating learning. To address this challenge, we adopt methods from semi-supervised and partial-label learning. We demonstrate that such strategies can surprisingly be made near-optimal, in the sense of approaching an “oracle” that learns on the aggregate dataset exhaustively labeled with the newest ontology.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Externally publishedYes
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Continual Learning with Evolving Class Ontologies'. Together they form a unique fingerprint.

Cite this