TY - JOUR
T1 - Context-dependent effect of polyethylene glycol on the structure and dynamics of hirudin
AU - Firouzbakht, Arash
AU - De, Anomitra
AU - Gruebele, Martin
N1 - A.F. and M.G. were supported by National Science Foundation grant NSF MCB 2205665 . We thank Prof. Kings Ghosh for valuable discussions on IDP dynamics and structure.
PY - 2025/1/7
Y1 - 2025/1/7
N2 - Hirudin is a bioactive small protein that binds thrombin to interrupt the blood clotting cascade. It contains an ordered and a disordered (IDR) region. Conjugating with polyethylene glycol (PEGylation) is an important modification of biopharmaceuticals to improve their lifetime and retention. Here, we studied by molecular dynamics (MD) simulation how hirudin P18 and its PEGylated variant differ in their structural flexibility depending on binding to thrombin and charge screening by NaCl. We also compare with glycated hirP18 and the hirV1 variant to assess effects of different polar attachments and sequence variability. First, we synthesized unlabeled and PEG-labeled hirP18 followed by an activity assay to ascertain that the peptide-PEG conjugate retains anticoagulant activity. Next, we carried 16 different microsecond MD simulations of the different proteins, bound and unbound, for 2 sequences and different salt conditions. Simulations were analyzed in terms of scaling exponents to study the effect of ionic strength on hirudin size and solvent-exposed surface area. We conclude that charge patterning of the sequence and the presence of arginine are 2 important features for how PEG interacts with the protein folded and intrinsically disordered regions. Specifically, PEG can screen end-to-end electrostatic interactions by “hiding” a positively charged region of hirudin, whereas hirV1 is less sticky than hirP18 due to different PEG-hirudin hydrophobic interactions and the presence of an arginine in hirP18. Conjugation with either PEG or a glycan significantly reduces solvent-exposed area of hirudin, but PEG interacts more efficiently with surface residues than does glycan due to its narrower chain that can fit in surface grooves, and alternation of polar (oxygen) and nonpolar (CH2-CH2) groups that interact favorably with charged and hydrophobic surface patches.
AB - Hirudin is a bioactive small protein that binds thrombin to interrupt the blood clotting cascade. It contains an ordered and a disordered (IDR) region. Conjugating with polyethylene glycol (PEGylation) is an important modification of biopharmaceuticals to improve their lifetime and retention. Here, we studied by molecular dynamics (MD) simulation how hirudin P18 and its PEGylated variant differ in their structural flexibility depending on binding to thrombin and charge screening by NaCl. We also compare with glycated hirP18 and the hirV1 variant to assess effects of different polar attachments and sequence variability. First, we synthesized unlabeled and PEG-labeled hirP18 followed by an activity assay to ascertain that the peptide-PEG conjugate retains anticoagulant activity. Next, we carried 16 different microsecond MD simulations of the different proteins, bound and unbound, for 2 sequences and different salt conditions. Simulations were analyzed in terms of scaling exponents to study the effect of ionic strength on hirudin size and solvent-exposed surface area. We conclude that charge patterning of the sequence and the presence of arginine are 2 important features for how PEG interacts with the protein folded and intrinsically disordered regions. Specifically, PEG can screen end-to-end electrostatic interactions by “hiding” a positively charged region of hirudin, whereas hirV1 is less sticky than hirP18 due to different PEG-hirudin hydrophobic interactions and the presence of an arginine in hirP18. Conjugation with either PEG or a glycan significantly reduces solvent-exposed area of hirudin, but PEG interacts more efficiently with surface residues than does glycan due to its narrower chain that can fit in surface grooves, and alternation of polar (oxygen) and nonpolar (CH2-CH2) groups that interact favorably with charged and hydrophobic surface patches.
UR - http://www.scopus.com/inward/record.url?scp=85211253730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85211253730&partnerID=8YFLogxK
U2 - 10.1016/j.bpj.2024.11.3311
DO - 10.1016/j.bpj.2024.11.3311
M3 - Article
C2 - 39600093
AN - SCOPUS:85211253730
SN - 0006-3495
VL - 124
SP - 192
EP - 204
JO - Biophysical journal
JF - Biophysical journal
IS - 1
ER -