Abstract
Stimuli are easier to process when context makes them predictable, but does context-based facilitation arise from preactivation of a limited set of relatively probable upcoming stimuli (with facilitation then linearly related to probability) or, instead, because the system maintains and updates a probability distribution across all items (with facilitation logarithmically related to probability)? We measured the N400, an index of semantic access, to words of varying probability, including unpredictable words. Word predictability was measured using both cloze probabilities and a state-of-the-art machine learning language model (GPT-2). We reanalyzed five datasets (n = 138) to demonstrate and then replicate that context-based facilitation on the N400 is graded, even among unpredictable words. Furthermore, we established that the relationship between word predictability and context-based facilitation combines linear and logarithmic functions. We argue that this composite function reveals properties of the mapping between words and semantic features and how feature- and word-related information is activated on-line.
Original language | English (US) |
---|---|
Article number | 104311 |
Journal | Journal of Memory and Language |
Volume | 123 |
DOIs | |
State | Published - Apr 2022 |
Keywords
- Context-based facilitation
- GPT-2
- N400
- Semantic access
ASJC Scopus subject areas
- Neuropsychology and Physiological Psychology
- Language and Linguistics
- Experimental and Cognitive Psychology
- Linguistics and Language
- Artificial Intelligence