Constrained information-theoretic tripartite graph clustering to identify semantically similar relations

Chenguang Wang, Yangqiu Song, Dan Roth, Chi Wang, Jiawei Han, Heng Ji, Ming Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In knowledge bases or information extraction results, differently expressed relations can be semantically similar (e.g., (X, wrote, Y) and (X, 's written work, Y)). Therefore, grouping semantically similar relations into clusters would facilitate and improve many applications, including knowledge base completion, information extraction, information retrieval, and more. This paper formulates relation clustering as a constrained tripartite graph clustering problem, presents an efficient clustering algorithm and exhibits the advantage of the constrained framework. We introduce several ways that provide side information via must-link and cannot-link constraints to improve the clustering results. Different from traditional semi-supervised learning approaches, we propose to use the similarity of relation expressions and the knowledge of entity types to automatically construct the constraints for the algorithm. We show improved relation clustering results on two datasets extracted from human annotated knowledge base (i.e., Freebase) and open information extraction results (i.e., ReVerb data).

Original languageEnglish (US)
Title of host publicationIJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
EditorsMichael Wooldridge, Qiang Yang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3882-3889
Number of pages8
ISBN (Electronic)9781577357384
StatePublished - Jan 1 2015
Event24th International Joint Conference on Artificial Intelligence, IJCAI 2015 - Buenos Aires, Argentina
Duration: Jul 25 2015Jul 31 2015

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2015-January
ISSN (Print)1045-0823

Other

Other24th International Joint Conference on Artificial Intelligence, IJCAI 2015
CountryArgentina
CityBuenos Aires
Period7/25/157/31/15

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Constrained information-theoretic tripartite graph clustering to identify semantically similar relations'. Together they form a unique fingerprint.

Cite this