Abstract
We present a novel approach for constrained Bayesian inference. Unlike current methods, our approach does not require convexity of the constraint set. We reduce the constrained variational inference to a parametric optimization over the feasible set of densities and propose a general recipe for such problems. We apply the proposed constrained Bayesian inference approach to multitask learning subject to rank constraints on the weight matrix. Further, constrained parameter estimation is applied to recover the sparse conditional independence structure encoded by prior precision matrices. Our approach is motivated by reverse inference for high dimensional functional neuroimaging, a domain where the high dimensionality and small number of examples requires the use of constraints to ensure meaningful and effective models. For this application, we propose a model that jointly learns a weight matrix and the prior inverse covariance structure between different tasks. We present experimental validation showing that the proposed approach outperforms strong baseline models in terms of predictive performance and structure recovery.
Original language | English (US) |
---|---|
Pages | 341-350 |
Number of pages | 10 |
State | Published - 2013 |
Externally published | Yes |
Event | 29th Conference on Uncertainty in Artificial Intelligence, UAI 2013 - Bellevue, WA, United States Duration: Jul 11 2013 → Jul 15 2013 |
Other
Other | 29th Conference on Uncertainty in Artificial Intelligence, UAI 2013 |
---|---|
Country/Territory | United States |
City | Bellevue, WA |
Period | 7/11/13 → 7/15/13 |
ASJC Scopus subject areas
- Artificial Intelligence