TY - JOUR
T1 - Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow
AU - Kumar, Dinesh
AU - Richter, Channing M.
AU - Schroeder, Charles M.
N1 - Publisher Copyright:
This journal is © The Royal Society of Chemistry.
PY - 2020
Y1 - 2020
N2 - Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we lack a complete understanding of the non-equilibrium dynamics of vesicles due to challenges associated with long-time observation of shape fluctuations in strong flows. In this work, we present a flow-phase diagram for vesicle shape and conformational transitions in planar extensional flow using a Stokes trap, which enables control over the center-of-mass position of single or multiple vesicles in precisely defined flows [A. Shenoy, C. V. Rao and C. M. Schroeder, Proc. Natl. Acad. Sci. U. S. A., 2016, 113(15), 3976-3981]. In this way, we directly observe the non-equilibrium conformations of lipid vesicles as a function of reduced volume ν, capillary number Ca, and viscosity contrast λ. Our results show that vesicle dynamics in extensional flow are characterized by the emergence of three distinct shape transitions, including a tubular to symmetric dumbbell transition, a spheroid to asymmetric dumbbell transition, and quasi-spherical to ellipsoid transition. The experimental phase diagram is in good agreement with recent predictions from simulations [V. Narsimhan, A. P. Spann and E. S. Shaqfeh, J. Fluid Mech., 2014, 750, 144]. We further show that the phase boundary of vesicle shape transitions is independent of the viscosity contrast. Taken together, our results demonstrate the utility of the Stokes trap for the precise quantification of vesicle stretching dynamics in precisely defined flows.
AB - Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we lack a complete understanding of the non-equilibrium dynamics of vesicles due to challenges associated with long-time observation of shape fluctuations in strong flows. In this work, we present a flow-phase diagram for vesicle shape and conformational transitions in planar extensional flow using a Stokes trap, which enables control over the center-of-mass position of single or multiple vesicles in precisely defined flows [A. Shenoy, C. V. Rao and C. M. Schroeder, Proc. Natl. Acad. Sci. U. S. A., 2016, 113(15), 3976-3981]. In this way, we directly observe the non-equilibrium conformations of lipid vesicles as a function of reduced volume ν, capillary number Ca, and viscosity contrast λ. Our results show that vesicle dynamics in extensional flow are characterized by the emergence of three distinct shape transitions, including a tubular to symmetric dumbbell transition, a spheroid to asymmetric dumbbell transition, and quasi-spherical to ellipsoid transition. The experimental phase diagram is in good agreement with recent predictions from simulations [V. Narsimhan, A. P. Spann and E. S. Shaqfeh, J. Fluid Mech., 2014, 750, 144]. We further show that the phase boundary of vesicle shape transitions is independent of the viscosity contrast. Taken together, our results demonstrate the utility of the Stokes trap for the precise quantification of vesicle stretching dynamics in precisely defined flows.
UR - http://www.scopus.com/inward/record.url?scp=85077403995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077403995&partnerID=8YFLogxK
U2 - 10.1039/c9sm02048a
DO - 10.1039/c9sm02048a
M3 - Article
C2 - 31802095
AN - SCOPUS:85077403995
SN - 1744-683X
VL - 16
SP - 337
EP - 347
JO - Soft Matter
JF - Soft Matter
IS - 2
ER -