Confluence: Conformity influence in large social networks

Jie Tang, Sen Wu, Jimeng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Conformity is a type of social influence involving a change in opinion or behavior in order to fit in with a group. Employing several social networks as the source for our experimental data, we study how the effect of conformity plays a role in changing users' online behavior. We formally define several major types of conformity in individual, peer, and group levels. We propose Confluence model to formalize the effects of social conformity into a probabilistic model. Confluence can distinguish and quantify the effects of the different types of conformities. To scale up to large social networks, we propose a distributed learning method that can construct the Confluence model efficiently with near-linear speedup. Our experimental results on four different types of large social networks, i.e., Flickr, Gowalla, Weibo and Co-Author, verify the existence of the conformity phenomena. Leveraging the conformity information, Confluence can accurately predict actions of users. Our experiments show that Confluence significantly improves the prediction accuracy by up to 5-10% compared with several alternative methods.

Original languageEnglish (US)
Title of host publicationKDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
EditorsRajesh Parekh, Jingrui He, Dhillon S. Inderjit, Paul Bradley, Yehuda Koren, Rayid Ghani, Ted E. Senator, Robert L. Grossman, Ramasamy Uthurusamy
PublisherAssociation for Computing Machinery
Pages347-355
Number of pages9
ISBN (Electronic)9781450321747
DOIs
StatePublished - Aug 11 2013
Externally publishedYes
Event19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013 - Chicago, United States
Duration: Aug 11 2013Aug 14 2013

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F128815

Other

Other19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013
CountryUnited States
CityChicago
Period8/11/138/14/13

Keywords

  • Conformity
  • Social influence
  • Social network

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Confluence: Conformity influence in large social networks'. Together they form a unique fingerprint.

  • Cite this

    Tang, J., Wu, S., & Sun, J. (2013). Confluence: Conformity influence in large social networks. In R. Parekh, J. He, D. S. Inderjit, P. Bradley, Y. Koren, R. Ghani, T. E. Senator, R. L. Grossman, & R. Uthurusamy (Eds.), KDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 347-355). [2487691] (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Vol. Part F128815). Association for Computing Machinery. https://doi.org/10.1145/2487575.2487691