Configuration studies for a plasma actuator technique using arc breakdown in a magnetic field

Joseph W. Zimmerman, Georgi K. Hristov, Moiz Vahora, Phillip J. Ansell, David L. Carroll

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent engineering research with the objective of improving the technology readiness level of an innovative plasma actuator device is presented. The new actuator is intended for use as an on-demand vortex generator in flow control applications; a high-voltage plasma arc is produced in the gap of a coaxial pair of electrodes positioned within a strong transverse magnetic field. Plasma arc generation within a magnetic field perpendicular to the current path results in a Lorentz force on the charged particles, causing the arc to sweep about the center of the coax, forming an apparent plasma disc. This concept couples thermal actuation of the plasma arc along with the induced swirl component produced by the angular velocity of the Lorentz forcing. Having similarity to microwave-generating cyclotron elements (e.g., magnetrons), the new actuator concept has been designated as a “Cyclotronic Arc Plasma Actuator”. This class of actuator can potentially be used in boundary layer flows by embedding span-wise arrays in an aerodynamic surface. The plasma device is intended to alleviate turbulent flow separation, acting as a low-complexity controllable vortex generator which can be engaged and disengaged as necessary during various phases of the flight profile. For example, the array of actuators can be enabled during takeoff and landing segments to improve the lift performance of the wing at low speeds, and disabled during cruise segments. With the actuator devices mounted flush (or conformal) to the aerodynamic surface, this avoids the parasitic drag penalty associated with conventional vane-type vortex generators during high-speed cruise. Advancements of this plasma actuator technology in the current research effort are intended to address a well-known problem in active flow control. Recent experiments are summarized, and hardware buildups for evaluation of the concept in wind tunnel tests and small-scale UAV flight tests are overviewed.

Original languageEnglish (US)
Title of host publication2018 Flow Control Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105548
DOIs
StatePublished - 2018
Event9th AIAA Flow Control Conference, 2018 - [state] GA, United States
Duration: Jun 25 2018Jun 29 2018

Publication series

Name2018 Flow Control Conference

Other

Other9th AIAA Flow Control Conference, 2018
CountryUnited States
City[state] GA
Period6/25/186/29/18

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Configuration studies for a plasma actuator technique using arc breakdown in a magnetic field'. Together they form a unique fingerprint.

Cite this