Computing shapley values in the plane

Sergio Cabello, Timothy M. Chan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the problem of computing Shapley values for points in the plane, where each point is interpreted as a player, and the value of a coalition is defined by the area of usual geometric objects, such as the convex hull or the minimum axis-parallel bounding box. For sets of n points in the plane, we show how to compute in roughly O(n3/2) time the Shapley values for the area of the minimum axis-parallel bounding box and the area of the union of the rectangles spanned by the origin and the input points. When the points form an increasing or decreasing chain, the running time can be improved to near-linear. In all these cases, we use linearity of the Shapley values and algebraic methods. We also show that Shapley values for the area of the convex hull or the minimum enclosing disk can be computed in O(n2) and O(n3) time, respectively. These problems are closely related to the model of stochastic point sets considered in computational geometry, but here we have to consider random insertion orders of the points instead of a probabilistic existence of points.

Original languageEnglish (US)
Title of host publication35th International Symposium on Computational Geometry, SoCG 2019
EditorsGill Barequet, Yusu Wang
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771047
DOIs
StatePublished - Jun 1 2019
Event35th International Symposium on Computational Geometry, SoCG 2019 - Portland, United States
Duration: Jun 18 2019Jun 21 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume129
ISSN (Print)1868-8969

Conference

Conference35th International Symposium on Computational Geometry, SoCG 2019
CountryUnited States
CityPortland
Period6/18/196/21/19

Keywords

  • Airport problem
  • Arrangements
  • Bounding box
  • Convex hull
  • Convolutions
  • Minimum enclosing disk
  • Shapley values
  • Stochastic computational geometry

ASJC Scopus subject areas

  • Software

Fingerprint Dive into the research topics of 'Computing shapley values in the plane'. Together they form a unique fingerprint.

Cite this