Computing bounded ε-reach set with finite precision computations for a class of linear hybrid automata

Kyoung Dae Kim, Sayan Mitra, P. R. Kumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In a previous paper [7] we have identified a special class of linear hybrid automata, called Deterministic Transversal Linear Hybrid Automata, and shown that an ε-reach set up to a finite time, called a bounded ε-reach set, can be computed using infinite precision calculations. However, given the linearity of the system and the consequent presence of matrix exponentials, numerical errors are inevitable in this computation. In this paper we address the problem of determining a bounded ε-reach set using variable finite precision numerical approximations. We present an algorithm for computing it that uses only such numerical approximations. We further develop an architecture for such bounded ε-reach set computation which decouples the basic algorithm for an ε-reach set with given parameter values from the choice of several runtime adaptation needed by several parameters in the variable precision approximations.

Original languageEnglish (US)
Title of host publicationHSCC'11 - Proceedings of the 2011 ACM/SIGBED Hybrid Systems
Subtitle of host publicationComputation and Control
Pages113-122
Number of pages10
DOIs
StatePublished - May 20 2011
Event14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011 - Chicago, IL, United States
Duration: Apr 12 2011Apr 14 2011

Publication series

NameHSCC'11 - Proceedings of the 2011 ACM/SIGBED Hybrid Systems: Computation and Control

Other

Other14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011
CountryUnited States
CityChicago, IL
Period4/12/114/14/11

Keywords

  • Deterministic discrete transition
  • Linear hybrid automata
  • Reachability
  • Transversal discrete transition

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Computing bounded ε-reach set with finite precision computations for a class of linear hybrid automata'. Together they form a unique fingerprint.

Cite this