Computer vision for music identification

Yan Ke, Derek Hoiem, Rahul Sukthankar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe how certain tasks in the audio domain can be effectively addressed using computer vision approaches. This paper focuses on the problem of music identification, where the goal is to reliably identify a song given a few seconds of noisy audio. Our approach treats the spectrogram of each music clip as a 2-D image and transforms music identification into a corrupted sub-image retrieval problem. By employing pairwise boosting on a large set of Viola-Jones features, our system learns compact, discriminative, local descriptors that are amenable to efficient indexing. During the query phase, we retrieve the set of song snippets that locally match the noisy sample and employ geometric verification in conjunction with an EM-based "occlusion" model to identify the song that is most consistent with the observed signal. We have implemented our algorithm in a practical system that can quickly and accurately recognize music from short audio samples in the presence of distortions such as poor recording quality and significant ambient noise. Our experiments demonstrate that this approach significantly outperforms the current state-of-the-art in content-based music identification.

Original languageEnglish (US)
Title of host publicationProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
PublisherIEEE Computer Society
Pages597-604
Number of pages8
ISBN (Print)0769523722, 9780769523729
DOIs
StatePublished - Jan 1 2005
Externally publishedYes
Event2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 - San Diego, CA, United States
Duration: Jun 20 2005Jun 25 2005

Publication series

NameProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
VolumeI

Other

Other2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
CountryUnited States
CitySan Diego, CA
Period6/20/056/25/05

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Computer vision for music identification'. Together they form a unique fingerprint.

  • Cite this

    Ke, Y., Hoiem, D., & Sukthankar, R. (2005). Computer vision for music identification. In Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (pp. 597-604). [1467322] (Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005; Vol. I). IEEE Computer Society. https://doi.org/10.1109/CVPR.2005.105