Abstract
We report that a graphene sheet has an unusual mode of atomic-scale fracture owing to its structural peculiarity, i.e. single sheet of atoms. Unlike conventional bondbreaking tensile fracture, a graphene sheet can be cut by in-plane compression, which is able to eject a row of atoms out-of-plane. Our scale-bridging molecular dynamics simulations and experiments reveal that this compressive atomic-sheet fracture is the critical precursor mechanism of cutting single-walled carbon nanotubes (SWCNTs) by sonication. The atomic-sheet fracture typically occurs within 200 fs during the dynamic axial buckling of a SWCNT; the nanotube is loaded by local nanoscale flow drag of water molecules caused by the collapse of a microbubble during sonication. This is on the contrary to common speculations that the nanotubes would be cut in tension, or by high-temperature chemical reactions in ultrasonication processes. The compressive fracture mechanism clarifies previously unexplainable diameter-dependent cutting of the SWCNTs under sonication.
Original language | English (US) |
---|---|
Pages (from-to) | 1270-1289 |
Number of pages | 20 |
Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 467 |
Issue number | 2129 |
DOIs | |
State | Published - May 8 2011 |
Externally published | Yes |
Keywords
- Atomic scission
- Buckling
- Carbon nanotube
- Nanofluidics
- Sonication
ASJC Scopus subject areas
- General Mathematics
- General Engineering
- General Physics and Astronomy