TY - JOUR
T1 - Comprehensive broad-band electromagnetic modeling of on-chip interconnects with a surface discretization-based generalized PEEC model
AU - Rong, Aosheng
AU - Cangellaris, Andreas C.
AU - Dong, Limin
N1 - Funding Information:
Manuscript received February 12, 2004; revised July 28, 2004. This work was supported in part by the Space and Naval Warfare Systems Center, San Diego, CA, under Grant N66001-01-1-8921 through North Carolina State University, as part of the Defense Advanced Research Projects Agency (DARPA) NeoCAD Program, in part by the Intel Corporation under a Grant to the University of Illinois, Urbana-Champaign, in part by the Semiconductor Research Corporation, and in part by the National Science Foundation under National Science Foundation Award 9988334.
PY - 2005/8
Y1 - 2005/8
N2 - A surface integral equation formalism is proposed for broad-band electromagnetic modeling of on-chip signal and power distribution networks. The discrete model is developed in the spirit of the partial element equivalent circuit (PEEC) model, which is extended with several attributes that lead to enhanced modeling versatility, modeling accuracy, and numerical solution robustness from dc to multigigahertz frequencies. Instead of the volumetric discretization model, which has dominated the PEEC-based schemes for handling the tall and slim cross sections of the on-chip wiring, the proposed model relies on a computationally more efficient conductor surface discretization. Key to the effectiveness and accuracy of the proposed surface discretization is the definition of a frequency- and position-dependent impedance quantity on the conductor surface. Its numerical computation over the frequency bandwidth of interest is expedited through the implementation of a complex frequency-hopping algorithm. The resulting effective surface impedance is combined with a mixed triangular/rectanguiar meshing of the conducting surfaces for the approximation of the surface electric current and charge densities. A systematic strategy for the identification of loops in the resulting discrete model is used to ensure a numerically stable mesh analysis-based PEEC formulation for on-chip signal and power distribution modeling with electromagnetic accuracy from dc to multigigahertz frequencies.
AB - A surface integral equation formalism is proposed for broad-band electromagnetic modeling of on-chip signal and power distribution networks. The discrete model is developed in the spirit of the partial element equivalent circuit (PEEC) model, which is extended with several attributes that lead to enhanced modeling versatility, modeling accuracy, and numerical solution robustness from dc to multigigahertz frequencies. Instead of the volumetric discretization model, which has dominated the PEEC-based schemes for handling the tall and slim cross sections of the on-chip wiring, the proposed model relies on a computationally more efficient conductor surface discretization. Key to the effectiveness and accuracy of the proposed surface discretization is the definition of a frequency- and position-dependent impedance quantity on the conductor surface. Its numerical computation over the frequency bandwidth of interest is expedited through the implementation of a complex frequency-hopping algorithm. The resulting effective surface impedance is combined with a mixed triangular/rectanguiar meshing of the conducting surfaces for the approximation of the surface electric current and charge densities. A systematic strategy for the identification of loops in the resulting discrete model is used to ensure a numerically stable mesh analysis-based PEEC formulation for on-chip signal and power distribution modeling with electromagnetic accuracy from dc to multigigahertz frequencies.
KW - Electromagnetic modeling
KW - Interconnects
KW - Partial element equivalent circuit (PEEC)
KW - Signal integrity
UR - http://www.scopus.com/inward/record.url?scp=24644484872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24644484872&partnerID=8YFLogxK
U2 - 10.1109/TADVP.2005.847837
DO - 10.1109/TADVP.2005.847837
M3 - Article
AN - SCOPUS:24644484872
SN - 1521-3323
VL - 28
SP - 434
EP - 444
JO - IEEE Transactions on Advanced Packaging
JF - IEEE Transactions on Advanced Packaging
IS - 3
ER -