Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination

Adithya Murali, Atharva Sehgal, Paul Krogmeier, P. Madhusudan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the problem of combining machine learning models to perform higher-level cognitive tasks with clear specifications. We propose the novel problem of Visual Discrimination Puzzles (VDP) that requires finding interpretable discriminators that classify images according to a logical specification. Humans can solve these puzzles with ease and they give robust, verifiable, and interpretable discriminators as answers. We propose a compositional neurosymbolic framework that combines a neural network to detect objects and relationships with a symbolic learner that finds interpretable discriminators. We create large classes of VDP datasets involving natural and artificial images and show that our neurosymbolic framework performs favorably compared to several purely neural approaches.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3358-3365
Number of pages8
ISBN (Electronic)9781956792003
DOIs
StatePublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: Jul 23 2022Jul 29 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period7/23/227/29/22

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination'. Together they form a unique fingerprint.

Cite this