Comparison of the dynamics of low immersion milling and cutting with varying spindle speed

Tamás Insperger, Gábor Stépán, Sri N. Namachchivaya

Research output: Contribution to conferencePaperpeer-review

Abstract

The stability properties of cutting processes are strongly limited by the so-called regenerative effect. This effect is originated in the presence of a time-delay in the dynamical system of the machine tool. This delay is inversely proportional to the cutting speed. Consequently, conventional cutting with a single-edge tool is modeled by an autonomous delay-differential equation (DDE). In case of milling, the varying number of cutting edges results in a kind of parametric excitation, and the corresponding mathematical model is a non-autonomous DDE. In case of low-immersion milling, this affects the stability boundaries in a substantial way. Cutting with varying spindle speed results non-autonomous DDEs where the time delay itself depends on the time periodically. A new semi-discretization method is proposed to handle the stability of these non-autonomous systems. The stability properties and corresponding bifurcations are compared in the above different cases of machining.

Original languageEnglish (US)
Pages2691-2698
Number of pages8
StatePublished - 2001
Event18th Biennial Conference on Mechanical Vibration and Noise - Pittsburgh, PA, United States
Duration: Sep 9 2001Sep 12 2001

Other

Other18th Biennial Conference on Mechanical Vibration and Noise
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/9/019/12/01

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Comparison of the dynamics of low immersion milling and cutting with varying spindle speed'. Together they form a unique fingerprint.

Cite this