TY - GEN
T1 - Comparison of quantum mechanical and empirical potential energy surfaces and computed rate coefficients for N2 dissociation
AU - Jaffe, Richard L.
AU - Schwenke, David W.
AU - Grover, Maninder
AU - Valentini, Paolo
AU - Schwartzentruber, Thomas E.
AU - Venturi, Simone
AU - Panesi, Marco
N1 - Publisher Copyright:
© 2016 by the American Institute of Aeronautics and Astronautics, Inc.
PY - 2016
Y1 - 2016
N2 - Comparisons are made between potential energy surfaces (PES) for N2 + N and N2 + N2 collisions and between rate coefficients for N2 dissociation that were computed using the quasiclassical trajectory method (QCT) on these PESs. For N2 + N we compare the Laganà’s empirical LEPS surface with one from NASA Ames Research Center based on ab initio quantum chemistry calculations. For N2 + N2 we compare two ab initio PESs (from NASA Ames and from the University of Minnesota). These use different methods for computing the ground state electronic energy for N4, but give similar results. Thermal N2 dissociation rate coefficients, for the 10,000K-30,000K temperature range, have been computed using each PES and the results are in excellent agreement. Quasi-stationary state (QSS) rate coefficients using both PESs have been computed at these temperatures using the Direct Molecular Simulation of Schwartzentruber and coworkers. The QSS rate coefficients are up to a factor of 5 lower than the thermal ones and the thermal and QSS values bracket the results of shock-tube experiments. We conclude that the combination of ab initio quantum chemistry PESs and QCT calculations provides an attractive approach for the determination of accurate high-temperature rate coefficients for use in aerothermodynamics modeling.
AB - Comparisons are made between potential energy surfaces (PES) for N2 + N and N2 + N2 collisions and between rate coefficients for N2 dissociation that were computed using the quasiclassical trajectory method (QCT) on these PESs. For N2 + N we compare the Laganà’s empirical LEPS surface with one from NASA Ames Research Center based on ab initio quantum chemistry calculations. For N2 + N2 we compare two ab initio PESs (from NASA Ames and from the University of Minnesota). These use different methods for computing the ground state electronic energy for N4, but give similar results. Thermal N2 dissociation rate coefficients, for the 10,000K-30,000K temperature range, have been computed using each PES and the results are in excellent agreement. Quasi-stationary state (QSS) rate coefficients using both PESs have been computed at these temperatures using the Direct Molecular Simulation of Schwartzentruber and coworkers. The QSS rate coefficients are up to a factor of 5 lower than the thermal ones and the thermal and QSS values bracket the results of shock-tube experiments. We conclude that the combination of ab initio quantum chemistry PESs and QCT calculations provides an attractive approach for the determination of accurate high-temperature rate coefficients for use in aerothermodynamics modeling.
UR - http://www.scopus.com/inward/record.url?scp=84985029772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985029772&partnerID=8YFLogxK
U2 - 10.2514/6.2016-0503
DO - 10.2514/6.2016-0503
M3 - Conference contribution
AN - SCOPUS:84985029772
SN - 9781624103933
T3 - 54th AIAA Aerospace Sciences Meeting
BT - 54th AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 54th AIAA Aerospace Sciences Meeting, 2016
Y2 - 4 January 2016 through 8 January 2016
ER -