TY - JOUR
T1 - Comparison of mouth morphology and prey size selection among three esocid taxa
AU - Detmer, Thomas M.
AU - Einfalt, Lisa Mary
AU - Parkos, Joseph J.
AU - Wahl, David H
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media B.V., part of Springer Nature.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Aquatic organisms, especially fishes, exhibit exceptional diversity in mouth morphology and this variation has been shown to influence foraging patterns. We compared mouth morphology among muskellunge Esox masquinongy, northern pike Esox lucius and their hybrid, tiger muskellunge E. masquinongy x E. lucius. Head and mouth size among the three taxa were similar for juveniles (<400 mm total length), but diverged with increasing length, being greater for northern pike than muskellunge. Tiger muskellunge had a head and mouth size intermediate to the two, but more similar to northern pike than muskellunge. Morphological differences among taxa were related to data examining prey size selection in laboratory and field experiments. In the laboratory, northern pike selected prey that were smaller than their maximum mouth width (widest point between outside corners of mouth), tiger muskellunge selected larger prey, and muskellunge size-selection was intermediate between the other two taxa. Among the three esocids, muskellunge had the smallest increase in handling time with increasing prey body depth relative to predator mouth width. In a common garden field experiment in three lakes containing mainly deep-bodied prey, results generally followed morphological patterns, with northern pike selecting larger prey compared to muskellunge. Although morphology predicted most of the variation in greatest body depth of prey consumed, the best predictor of prey size was a model that included predator mouth width, taxon, and interaction. Information comparing prey size selection among esocid taxa is useful for understanding how to manage esocid populations based on system-specific prey characteristics and also for understanding how variations in morphological characteristics of apex predators can influence prey vulnerability and ecosystem structure.
AB - Aquatic organisms, especially fishes, exhibit exceptional diversity in mouth morphology and this variation has been shown to influence foraging patterns. We compared mouth morphology among muskellunge Esox masquinongy, northern pike Esox lucius and their hybrid, tiger muskellunge E. masquinongy x E. lucius. Head and mouth size among the three taxa were similar for juveniles (<400 mm total length), but diverged with increasing length, being greater for northern pike than muskellunge. Tiger muskellunge had a head and mouth size intermediate to the two, but more similar to northern pike than muskellunge. Morphological differences among taxa were related to data examining prey size selection in laboratory and field experiments. In the laboratory, northern pike selected prey that were smaller than their maximum mouth width (widest point between outside corners of mouth), tiger muskellunge selected larger prey, and muskellunge size-selection was intermediate between the other two taxa. Among the three esocids, muskellunge had the smallest increase in handling time with increasing prey body depth relative to predator mouth width. In a common garden field experiment in three lakes containing mainly deep-bodied prey, results generally followed morphological patterns, with northern pike selecting larger prey compared to muskellunge. Although morphology predicted most of the variation in greatest body depth of prey consumed, the best predictor of prey size was a model that included predator mouth width, taxon, and interaction. Information comparing prey size selection among esocid taxa is useful for understanding how to manage esocid populations based on system-specific prey characteristics and also for understanding how variations in morphological characteristics of apex predators can influence prey vulnerability and ecosystem structure.
KW - Mouth morphology
KW - Muskellunge
KW - Northern pike
KW - Prey size selection
KW - Tiger muskellunge
UR - http://www.scopus.com/inward/record.url?scp=85040086756&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040086756&partnerID=8YFLogxK
U2 - 10.1007/s10641-017-0710-2
DO - 10.1007/s10641-017-0710-2
M3 - Article
AN - SCOPUS:85040086756
SN - 0378-1909
VL - 101
SP - 449
EP - 458
JO - Environmental Biology of Fishes
JF - Environmental Biology of Fishes
IS - 3
ER -