Comparison of equine tendon-and bone marrow-derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation

Sushmitha S. Durgam, Allison A. Stewart, Holly C. Pondenis, Santiago Daniel Gutierrez Nibeyro, Richard B. Evans, Matthew C Stewart

Research output: Contribution to journalArticlepeer-review

Abstract

Objective-To compare in vitro expansion, explant colonization, and matrix synthesis of equine tendon-and bone marrow-derived cells in response to insulin-like growth factor-I (IGF-I) supplementation. Sample-Cells isolated from 7 young adult horses. Procedures-Tendon-and bone marrow-derived progenitor cells were isolated, evaluated for yield, and cultured on autogenous cell-free tendon matrix for 7 days. Samples were analyzed for cell viability and expression of collagen type I, collagen type III, and cartilage oligomeric matrix protein mRNAs. Collagen and glycosaminoglycan syntheses were quantified over a 24-hour period. Results-Tendon-and bone marrow-derived cells required 17 to 19 days of monolayer culture to reach 2 passages. Mean ± SE number of monolayer cells isolated was higher for tendon-derived cells (7.9 ± 0.9 X 10 6) than for bone marrow-derived cells (1.2 ± 0.1 X 10 6). Cell numbers after culture for 7 days on acellular tendon matrix were 1.6-to 2.8-fold higher for tendon-derived cells than for bone marrow-derived cells and 0.8-to 1.7-fold higher for IGF-I supplementation than for untreated cells. New collagen and glycosaminoglycan syntheses were significantly greater in tendon-derived cell groups and in IGF-I-supplemented groups. The mRNA concentrations of collagen type I, collagen type III, and cartilage oligomeric matrix protein were not significantly different between tendon-and bone marrow-derived groups. Conclusions and Clinical Relevance-In vitro results of this study suggested that tendonderived cells supplemented with IGF-I may offer a useful resource for cell-based strategies in tendon healing.

Original languageEnglish (US)
Pages (from-to)153-161
Number of pages9
JournalAmerican journal of veterinary research
Volume73
Issue number1
DOIs
StatePublished - Jan 1 2012

ASJC Scopus subject areas

  • veterinary(all)

Fingerprint Dive into the research topics of 'Comparison of equine tendon-and bone marrow-derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation'. Together they form a unique fingerprint.

Cite this