Abstract
We used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0-3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 106 km2 (from 2.9 to 12.3 - without and with these processes, respectively) and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of 0.5°C) differed by up to 2.3 × 106 km2, with minimal contribution of up to 0.7 × 106 km2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0-3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (0-1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.
Original language | English (US) |
---|---|
Pages (from-to) | 453-466 |
Number of pages | 14 |
Journal | Journal of Advances in Modeling Earth Systems |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1 2016 |
Keywords
- biogeophysics
- energy cycle
- permafrost
- permafrost area
- permafrost degradation
- water cycle
ASJC Scopus subject areas
- Global and Planetary Change
- Environmental Chemistry
- General Earth and Planetary Sciences