TY - JOUR
T1 - Comparison of Antimicrobial Resistance among Commensal Escherichia coli Isolated from Retail Table Eggs Produced by Laying Hens from the Cage and Non-Cage Housing Systems in Western Australia
AU - Sodagari, Hamid Reza
AU - Varga, Csaba
AU - Habib, Ihab
AU - Sahibzada, Shafi
N1 - Funding Information:
This research was supported by a Ph.D. Scholarship from Murdoch University and a postdoctoral research associate fund from the Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign given to Hamid Reza Sodagari.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Antimicrobial resistance (AMR) has become a global public health concern in recent decades. Although several investigations evaluated AMR in commensal and pathogenic bacteria from different foods of animal origin in Australia, there is a lack of studies that compared AMR in commensal E. coli isolated from retail table eggs obtained from different laying hen housing systems. This study aimed to determine AMR and differences in AMR patterns among E. coli isolates recovered from retail table eggs sourced from caged and non-caged housing systems in Western Australia. Commensal E. coli isolates were tested for susceptibility to 14 antimicrobials using a broth microdilution method. Clustering analyses and logistic regression models were applied to identify patterns and differences in AMR. Overall, there were moderate to high frequencies of resistance to the antimicrobials of lower importance used in Australian human medicine (tetracycline, ampicillin, trimethoprim, and sulfamethoxazole) in the isolates sourced from the eggs of two production systems. All E. coli isolates were susceptible to all critically important antimicrobials except the very low level of resistance to ciprofloxacin. E. coli isolates from eggs of non-caged systems had higher odds of resistance to tetracycline (OR = 5.76, p < 0.001) and ampicillin (OR = 3.42, p ≤ 0.01) compared to the isolates from eggs of caged systems. Moreover, the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in table eggs from non-caged systems than isolates from caged systems’ eggs. Considering the conservative approach in using antimicrobials in the Australian layer flocks, our findings highlight the potential role of the environment or human-related factors in the dissemination and emergence of AMR in commensal E. coli, particularly in retail table eggs of non-cage system origin. Further comprehensive epidemiological studies are required to better understand the role of different egg production systems in the emergence and dissemination of AMR in commensal E. coli.
AB - Antimicrobial resistance (AMR) has become a global public health concern in recent decades. Although several investigations evaluated AMR in commensal and pathogenic bacteria from different foods of animal origin in Australia, there is a lack of studies that compared AMR in commensal E. coli isolated from retail table eggs obtained from different laying hen housing systems. This study aimed to determine AMR and differences in AMR patterns among E. coli isolates recovered from retail table eggs sourced from caged and non-caged housing systems in Western Australia. Commensal E. coli isolates were tested for susceptibility to 14 antimicrobials using a broth microdilution method. Clustering analyses and logistic regression models were applied to identify patterns and differences in AMR. Overall, there were moderate to high frequencies of resistance to the antimicrobials of lower importance used in Australian human medicine (tetracycline, ampicillin, trimethoprim, and sulfamethoxazole) in the isolates sourced from the eggs of two production systems. All E. coli isolates were susceptible to all critically important antimicrobials except the very low level of resistance to ciprofloxacin. E. coli isolates from eggs of non-caged systems had higher odds of resistance to tetracycline (OR = 5.76, p < 0.001) and ampicillin (OR = 3.42, p ≤ 0.01) compared to the isolates from eggs of caged systems. Moreover, the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in table eggs from non-caged systems than isolates from caged systems’ eggs. Considering the conservative approach in using antimicrobials in the Australian layer flocks, our findings highlight the potential role of the environment or human-related factors in the dissemination and emergence of AMR in commensal E. coli, particularly in retail table eggs of non-cage system origin. Further comprehensive epidemiological studies are required to better understand the role of different egg production systems in the emergence and dissemination of AMR in commensal E. coli.
KW - antibiotic resistance
KW - multidrug resistance
KW - E. coli
KW - retail eggs
KW - egg production system
KW - Australia
UR - http://www.scopus.com/inward/record.url?scp=85151657886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151657886&partnerID=8YFLogxK
U2 - 10.3390/antibiotics12030588
DO - 10.3390/antibiotics12030588
M3 - Article
C2 - 36978454
SN - 2079-6382
VL - 12
JO - Antibiotics
JF - Antibiotics
IS - 3
M1 - 588
ER -