Compact representation of multidimensional data using tensor rank-one decomposition

Hongcheng Wang, Narendra Ahuja

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a new approach for representing multidimensional data by a compact number of bases. We consider the multidimensional data as tensors instead of matrices or vectors, and propose a Tensor Rank-One Decomposition (TROD) algorithm by decomposing Nth-order data into a collection of rank-1 tensors based on multilinear algebra. By applying this algorithm to image sequence compression, we obtain much higher quality images with the same compression ratio as Principle Component Analysis (PCA). Experiments with gray-level and color video se-quences are used to illustrate the validity of this approach.

Original languageEnglish (US)
Title of host publicationProceedings of the 17th International Conference on Pattern Recognition, ICPR 2004
EditorsJ. Kittler, M. Petrou, M. Nixon
Pages44-47
Number of pages4
DOIs
StatePublished - 2004
EventProceedings of the 17th International Conference on Pattern Recognition, ICPR 2004 - Cambridge, United Kingdom
Duration: Aug 23 2004Aug 26 2004

Publication series

NameProceedings - International Conference on Pattern Recognition
Volume1
ISSN (Print)1051-4651

Other

OtherProceedings of the 17th International Conference on Pattern Recognition, ICPR 2004
Country/TerritoryUnited Kingdom
CityCambridge
Period8/23/048/26/04

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Compact representation of multidimensional data using tensor rank-one decomposition'. Together they form a unique fingerprint.

Cite this