Commercial lunar propellant architecture: A collaborative study of lunar propellant production

David Kornuta, Angel Abbud-Madrid, Jared Atkinson, Jonathan Barr, Gary Barnhard, Dallas Bienhoff, Brad Blair, Vanessa Clark, Justin Cyrus, Blair DeWitt, Chris Dreyer, Barry Finger, Jonathan Goff, Koki Ho, Laura Kelsey, Jim Keravala, Bernard Kutter, Philip Metzger, Laura Montgomery, Phillip MorrisonClive Neal, Erica Otto, Gordon Roesler, Jim Schier, Brandon Seifert, George Sowers, Paul Spudis, Mark Sundahl, Kris Zacny, Guangdong Zhu

Research output: Contribution to journalReview article

Abstract

Aside 2 from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon's shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space. This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required. Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions. A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually. Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen). To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters. New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible. Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation. The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities. The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities. This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.

Original languageEnglish (US)
Article number100026
JournalREACH
Volume13
DOIs
StatePublished - Mar 2019

Fingerprint

propellants
Propellants
Moon
moon
water
Earth (planet)
Water
regolith
Ice
ice
costs
leadership
Orbit
Hydrogen
craters
Oxygen
Industry
Costs and Cost Analysis
economics
Orbits

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Medicine (miscellaneous)
  • Radiation
  • Aerospace Engineering
  • Radiology Nuclear Medicine and imaging

Cite this

Kornuta, D., Abbud-Madrid, A., Atkinson, J., Barr, J., Barnhard, G., Bienhoff, D., ... Zhu, G. (2019). Commercial lunar propellant architecture: A collaborative study of lunar propellant production. REACH, 13, [100026]. https://doi.org/10.1016/j.reach.2019.100026

Commercial lunar propellant architecture : A collaborative study of lunar propellant production. / Kornuta, David; Abbud-Madrid, Angel; Atkinson, Jared; Barr, Jonathan; Barnhard, Gary; Bienhoff, Dallas; Blair, Brad; Clark, Vanessa; Cyrus, Justin; DeWitt, Blair; Dreyer, Chris; Finger, Barry; Goff, Jonathan; Ho, Koki; Kelsey, Laura; Keravala, Jim; Kutter, Bernard; Metzger, Philip; Montgomery, Laura; Morrison, Phillip; Neal, Clive; Otto, Erica; Roesler, Gordon; Schier, Jim; Seifert, Brandon; Sowers, George; Spudis, Paul; Sundahl, Mark; Zacny, Kris; Zhu, Guangdong.

In: REACH, Vol. 13, 100026, 03.2019.

Research output: Contribution to journalReview article

Kornuta, D, Abbud-Madrid, A, Atkinson, J, Barr, J, Barnhard, G, Bienhoff, D, Blair, B, Clark, V, Cyrus, J, DeWitt, B, Dreyer, C, Finger, B, Goff, J, Ho, K, Kelsey, L, Keravala, J, Kutter, B, Metzger, P, Montgomery, L, Morrison, P, Neal, C, Otto, E, Roesler, G, Schier, J, Seifert, B, Sowers, G, Spudis, P, Sundahl, M, Zacny, K & Zhu, G 2019, 'Commercial lunar propellant architecture: A collaborative study of lunar propellant production', REACH, vol. 13, 100026. https://doi.org/10.1016/j.reach.2019.100026
Kornuta D, Abbud-Madrid A, Atkinson J, Barr J, Barnhard G, Bienhoff D et al. Commercial lunar propellant architecture: A collaborative study of lunar propellant production. REACH. 2019 Mar;13. 100026. https://doi.org/10.1016/j.reach.2019.100026
Kornuta, David ; Abbud-Madrid, Angel ; Atkinson, Jared ; Barr, Jonathan ; Barnhard, Gary ; Bienhoff, Dallas ; Blair, Brad ; Clark, Vanessa ; Cyrus, Justin ; DeWitt, Blair ; Dreyer, Chris ; Finger, Barry ; Goff, Jonathan ; Ho, Koki ; Kelsey, Laura ; Keravala, Jim ; Kutter, Bernard ; Metzger, Philip ; Montgomery, Laura ; Morrison, Phillip ; Neal, Clive ; Otto, Erica ; Roesler, Gordon ; Schier, Jim ; Seifert, Brandon ; Sowers, George ; Spudis, Paul ; Sundahl, Mark ; Zacny, Kris ; Zhu, Guangdong. / Commercial lunar propellant architecture : A collaborative study of lunar propellant production. In: REACH. 2019 ; Vol. 13.
@article{f975750cb49d4faa82d0a1995364e1f4,
title = "Commercial lunar propellant architecture: A collaborative study of lunar propellant production",
abstract = "Aside 2 from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon's shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space. This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required. Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions. A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually. Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen). To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters. New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible. Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation. The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities. The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities. This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.",
author = "David Kornuta and Angel Abbud-Madrid and Jared Atkinson and Jonathan Barr and Gary Barnhard and Dallas Bienhoff and Brad Blair and Vanessa Clark and Justin Cyrus and Blair DeWitt and Chris Dreyer and Barry Finger and Jonathan Goff and Koki Ho and Laura Kelsey and Jim Keravala and Bernard Kutter and Philip Metzger and Laura Montgomery and Phillip Morrison and Clive Neal and Erica Otto and Gordon Roesler and Jim Schier and Brandon Seifert and George Sowers and Paul Spudis and Mark Sundahl and Kris Zacny and Guangdong Zhu",
year = "2019",
month = "3",
doi = "10.1016/j.reach.2019.100026",
language = "English (US)",
volume = "13",
journal = "REACH",
issn = "2352-3093",
publisher = "Elsevier GmbH",

}

TY - JOUR

T1 - Commercial lunar propellant architecture

T2 - A collaborative study of lunar propellant production

AU - Kornuta, David

AU - Abbud-Madrid, Angel

AU - Atkinson, Jared

AU - Barr, Jonathan

AU - Barnhard, Gary

AU - Bienhoff, Dallas

AU - Blair, Brad

AU - Clark, Vanessa

AU - Cyrus, Justin

AU - DeWitt, Blair

AU - Dreyer, Chris

AU - Finger, Barry

AU - Goff, Jonathan

AU - Ho, Koki

AU - Kelsey, Laura

AU - Keravala, Jim

AU - Kutter, Bernard

AU - Metzger, Philip

AU - Montgomery, Laura

AU - Morrison, Phillip

AU - Neal, Clive

AU - Otto, Erica

AU - Roesler, Gordon

AU - Schier, Jim

AU - Seifert, Brandon

AU - Sowers, George

AU - Spudis, Paul

AU - Sundahl, Mark

AU - Zacny, Kris

AU - Zhu, Guangdong

PY - 2019/3

Y1 - 2019/3

N2 - Aside 2 from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon's shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space. This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required. Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions. A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually. Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen). To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters. New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible. Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation. The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities. The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities. This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.

AB - Aside 2 from Earth, the inner solar system is like a vast desert where water and other volatiles are scarce. An old saying is, “In the desert, gold is useless and water is priceless.” While water is common on Earth, it is of very high value in space. Science missions to the Moon have provided direct evidence that regions near the lunar poles, which are permanently in shadow, contain substantial concentrations of water ice. On the lunar surface, water itself is critical for human consumption and radiation shielding, but water can also be decomposed into hydrogen and oxygen via electrolysis. The oxygen thus produced can be used for life support, and hydrogen and oxygen can be combusted for rocket propulsion. Due to the Moon's shallow gravity well, its water-derived products can be exported to fuel entirely new economic opportunities in space. This paper is the result of an examination by industry, government, and academic experts of the approach, challenges, and payoffs of a private business that harvests and processes lunar ice as the foundation of a lunar, cislunar (between the Earth and the Moon), and Earth-orbiting economy. A key assumption of this analysis is that all work—construction, operation, transport, maintenance and repair—is done by robotic systems. No human presence is required. Obtaining more data on conditions within the shadowed regions is vital to the design of a lunar ice processing plant. How much water is actually present, and at what percentage in the lunar regolith? How firm or soft are the crater bottoms, and how will that affect surface transportation? How deep is the ice resource, and in what state is it deposited amongst the regolith? These and other questions must be answered by precursor prospecting and science missions. A wide range of potential customers for the hydrogen and oxygen products has been identified. They can be used to fuel reusable landers going back and forth between the lunar surface and lunar orbit. They can make travel to Mars less expensive if the interplanetary vehicle can be refueled in cislunar space prior to departure. Operations closer to Earth can also benefit from this new, inexpensive source of propellant. Refueling in Low Earth Orbit can greatly improve the size, type, and cost of missions to Geosynchronous Earth Orbit and beyond. This study has identified a near term annual demand of 450 metric tons of lunar derived propellant equating to 2450 metric tons of processed lunar water generating $2.4 billion of revenue annually. Unlike terrestrial mining operations that utilize heavy machinery to move resources, the mass constraints of a lunar polar water mine are highly restrictive because of delivery cost. A revolutionary concept has been introduced that solves this issue. It has been discovered that instead of excavating, hauling, and processing, lightweight tents and/or heating augers can be used to extract the water resource directly out of the regolith in place. Water will be extracted from the regolith by sublimation—heating ice to convert it into water vapor without going through the liquid phase. This water vapor can then be collected on a cold surface for transport to a processing plant where electrolysis will decompose the water into its constituent parts (hydrogen and oxygen). To achieve production demand with this method, 2.8 megawatts of power is required (2 megawatts electrical and 0.8 megawatts thermal). The majority of the electrical power will be needed in the processing plant, where water is broken down into hydrogen and oxygen. This substantial amount of power can come from solar panels, sunlight reflected directly to the extraction site, or nuclear power. Because the bottoms of the polar craters are permanently shadowed, captured solar energy must be transported from locations of sunlight (crater rim) via power beaming or power cables. Unlike solar power sources, nuclear reactors can operate at any location; however, they generate heat that must be utilized or rejected that may be simplified if located in the cold, permanently shadowed craters. New or exotic technologies have been excluded from this study but may be incorporated into future architectures as they become available. Instead, the equipment described in this lunar propellant operation will be built from existing technologies that have been modified for the specific needs on the Moon. Surprisingly little new science is required to build this plant. Extensive testing on Earth will precede deployment to the Moon, to ensure that the robotics, extraction, chemical processing and storage all work together efficiently. The contributors to this study are those who are currently developing or have already developed the equipment required to enable this capability. From a technological perspective, a lunar propellant production plant is highly feasible. Now is the time to establish the collaborations, partnerships, and leadership that can make this new commercial enterprise a reality. Currently, no one company has all of the capabilities necessary to build the lunar plant, but the capabilities all exist within United States aerospace industry and others (such as the chemical industry). It is necessary that new or existing competing companies establish the leadership needed to coordinate the variety of technologies required for a fully integrated Commercial Lunar Propellant Architecture. Free market competition among these companies will aid in driving down costs, promoting innovation, and expanding the market. To justify such action, a secure customer base, solid business case, and high fidelity economic model is required. This too will help secure the investment required for development and implementation. The initial investment for this operation has been estimated at $4 billion, about the cost of a luxury hotel in Las Vegas. With this investment however, a scalable market can be accessed. As refueling decreases in-space transportation costs, entirely new business and exploration opportunities will emerge with potential to vastly benefit the economies of Earth. Even with the early customers identified within this study, it has been determined that this could be a profitable investment with excellent growth opportunities. The United States Government has critical roles to play in the development of this commercial capability as well. Government science/prospecting and communications missions to the Moon can be very helpful in both the development and operational phases of the business. Government laboratories can contribute some of their technologies and help facilitate integrated systems tests of a terrestrial pilot plant. Government must also work to fill the gaps in international law regarding property rights on celestial bodies such as the Moon. In addition, between Earth orbit, Moon, and Mars missions, government could be an important anchor customer for the resource, stimulating the private sector into action with proposed demands and price points while improving its mission costs and capabilities. This study demonstrates both the technical and economic feasibility of establishing a commercial lunar propellant production capability. It provides recommendations to interested government and private organizations and defines a path to implementation; and explains that by doing so the United States will fuel a new age of economic expansion, sustained space exploration, settlement, and American leadership in space.

UR - http://www.scopus.com/inward/record.url?scp=85062474011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062474011&partnerID=8YFLogxK

U2 - 10.1016/j.reach.2019.100026

DO - 10.1016/j.reach.2019.100026

M3 - Review article

AN - SCOPUS:85062474011

VL - 13

JO - REACH

JF - REACH

SN - 2352-3093

M1 - 100026

ER -