Combustion of Switchgrass in Biomass Home Heating Systems: Emissions and Ash Behavior

Research output: Contribution to journalArticle

Abstract

Emissions and efficiency of three commercially available furnace types, horizontal feed, underfeed, and dropdown feed, were characterized using switchgrass pellets, and the results were compared to wood pellets. The efficiency of the furnaces was determined using a mass balance method. The gaseous emissions, including carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) measurements, were conducted using the Testo 350 portable emission analyzer on all three furnaces at high- and low-load conditions. The particulate matter (PM) emissions were measured gravimetrically from filter measurements. There were no major differences in combustion efficiency noted among the three furnaces for both switchgrass and wood at high loads. PM emissions were higher for switchgrass compared to wood under both high- and low-load conditions likely as a result of the higher ash content. The CO emissions varied between furnace ranging from 21 to 53 g/kg for wood and from 10 to 28 g/kg for switchgrass under high load. Under low-load conditions, the emissions from wood were comparable to switchgrass. SO2 emissions were similar to wood, except in furnace 2, where switchgrass exhibited much higher SO2 concentrations. NOx emissions were typically higher for switchgrass for all furnaces when compared to wood. PM and ash was analyzed for their chemical composition using inductively couple plasma-mass spectroscopy, atomic absorption spectroscopy, and X-ray fluorescence. It was found that most of the non-volatile elements and heavy metals remained in the bottom ash. Sulfate and potassium contributed to about 25-50% of the fine particle (PM2.5) mass. More clinker formation was observed in the horizontal auger feed (furnace 1) as a result of alkali release and subsequent melting of potassium silicate. The furnace with the least operational problems during switchgrass combustion was further studied with a catalytic retrofit to reduce the emissions. After the retrofit, the CO emissions were reduced by about 80%. However, an increase in NOx emissions was observed likely as a result of the formation of thermal NOx. The catalysts also oxidized some of the soot particles (elemental carbon) and hydrocarbons (organic carbon and volatile organic compounds) formed from the incomplete combustion and slightly reduced the PM emissions.

Original languageEnglish (US)
Pages (from-to)2958-2967
Number of pages10
JournalEnergy and Fuels
Volume30
Issue number4
DOIs
StatePublished - Apr 21 2016

Fingerprint

Ashes
Biomass
Furnaces
Heating
Wood
Nitrogen Oxides
Particulate Matter
Nitrogen oxides
Carbon Monoxide
Carbon monoxide
Organic carbon
Potassium
Coal Ash
Soot
Volatile Organic Compounds
Silicates
Atomic spectroscopy
Sulfur Dioxide
Alkalies
Sulfur dioxide

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology

Cite this

Combustion of Switchgrass in Biomass Home Heating Systems : Emissions and Ash Behavior. / Chandrasekaran, Sriraam R.; Sharma, Brajendra K.; Hopke, Philip K.; Rajagopalan, Nandakishore.

In: Energy and Fuels, Vol. 30, No. 4, 21.04.2016, p. 2958-2967.

Research output: Contribution to journalArticle

@article{009739093739467ea477b2321efb5cd9,
title = "Combustion of Switchgrass in Biomass Home Heating Systems: Emissions and Ash Behavior",
abstract = "Emissions and efficiency of three commercially available furnace types, horizontal feed, underfeed, and dropdown feed, were characterized using switchgrass pellets, and the results were compared to wood pellets. The efficiency of the furnaces was determined using a mass balance method. The gaseous emissions, including carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) measurements, were conducted using the Testo 350 portable emission analyzer on all three furnaces at high- and low-load conditions. The particulate matter (PM) emissions were measured gravimetrically from filter measurements. There were no major differences in combustion efficiency noted among the three furnaces for both switchgrass and wood at high loads. PM emissions were higher for switchgrass compared to wood under both high- and low-load conditions likely as a result of the higher ash content. The CO emissions varied between furnace ranging from 21 to 53 g/kg for wood and from 10 to 28 g/kg for switchgrass under high load. Under low-load conditions, the emissions from wood were comparable to switchgrass. SO2 emissions were similar to wood, except in furnace 2, where switchgrass exhibited much higher SO2 concentrations. NOx emissions were typically higher for switchgrass for all furnaces when compared to wood. PM and ash was analyzed for their chemical composition using inductively couple plasma-mass spectroscopy, atomic absorption spectroscopy, and X-ray fluorescence. It was found that most of the non-volatile elements and heavy metals remained in the bottom ash. Sulfate and potassium contributed to about 25-50{\%} of the fine particle (PM2.5) mass. More clinker formation was observed in the horizontal auger feed (furnace 1) as a result of alkali release and subsequent melting of potassium silicate. The furnace with the least operational problems during switchgrass combustion was further studied with a catalytic retrofit to reduce the emissions. After the retrofit, the CO emissions were reduced by about 80{\%}. However, an increase in NOx emissions was observed likely as a result of the formation of thermal NOx. The catalysts also oxidized some of the soot particles (elemental carbon) and hydrocarbons (organic carbon and volatile organic compounds) formed from the incomplete combustion and slightly reduced the PM emissions.",
author = "Chandrasekaran, {Sriraam R.} and Sharma, {Brajendra K.} and Hopke, {Philip K.} and Nandakishore Rajagopalan",
year = "2016",
month = "4",
day = "21",
doi = "10.1021/acs.energyfuels.5b02624",
language = "English (US)",
volume = "30",
pages = "2958--2967",
journal = "Energy & Fuels",
issn = "0887-0624",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Combustion of Switchgrass in Biomass Home Heating Systems

T2 - Emissions and Ash Behavior

AU - Chandrasekaran, Sriraam R.

AU - Sharma, Brajendra K.

AU - Hopke, Philip K.

AU - Rajagopalan, Nandakishore

PY - 2016/4/21

Y1 - 2016/4/21

N2 - Emissions and efficiency of three commercially available furnace types, horizontal feed, underfeed, and dropdown feed, were characterized using switchgrass pellets, and the results were compared to wood pellets. The efficiency of the furnaces was determined using a mass balance method. The gaseous emissions, including carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) measurements, were conducted using the Testo 350 portable emission analyzer on all three furnaces at high- and low-load conditions. The particulate matter (PM) emissions were measured gravimetrically from filter measurements. There were no major differences in combustion efficiency noted among the three furnaces for both switchgrass and wood at high loads. PM emissions were higher for switchgrass compared to wood under both high- and low-load conditions likely as a result of the higher ash content. The CO emissions varied between furnace ranging from 21 to 53 g/kg for wood and from 10 to 28 g/kg for switchgrass under high load. Under low-load conditions, the emissions from wood were comparable to switchgrass. SO2 emissions were similar to wood, except in furnace 2, where switchgrass exhibited much higher SO2 concentrations. NOx emissions were typically higher for switchgrass for all furnaces when compared to wood. PM and ash was analyzed for their chemical composition using inductively couple plasma-mass spectroscopy, atomic absorption spectroscopy, and X-ray fluorescence. It was found that most of the non-volatile elements and heavy metals remained in the bottom ash. Sulfate and potassium contributed to about 25-50% of the fine particle (PM2.5) mass. More clinker formation was observed in the horizontal auger feed (furnace 1) as a result of alkali release and subsequent melting of potassium silicate. The furnace with the least operational problems during switchgrass combustion was further studied with a catalytic retrofit to reduce the emissions. After the retrofit, the CO emissions were reduced by about 80%. However, an increase in NOx emissions was observed likely as a result of the formation of thermal NOx. The catalysts also oxidized some of the soot particles (elemental carbon) and hydrocarbons (organic carbon and volatile organic compounds) formed from the incomplete combustion and slightly reduced the PM emissions.

AB - Emissions and efficiency of three commercially available furnace types, horizontal feed, underfeed, and dropdown feed, were characterized using switchgrass pellets, and the results were compared to wood pellets. The efficiency of the furnaces was determined using a mass balance method. The gaseous emissions, including carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) measurements, were conducted using the Testo 350 portable emission analyzer on all three furnaces at high- and low-load conditions. The particulate matter (PM) emissions were measured gravimetrically from filter measurements. There were no major differences in combustion efficiency noted among the three furnaces for both switchgrass and wood at high loads. PM emissions were higher for switchgrass compared to wood under both high- and low-load conditions likely as a result of the higher ash content. The CO emissions varied between furnace ranging from 21 to 53 g/kg for wood and from 10 to 28 g/kg for switchgrass under high load. Under low-load conditions, the emissions from wood were comparable to switchgrass. SO2 emissions were similar to wood, except in furnace 2, where switchgrass exhibited much higher SO2 concentrations. NOx emissions were typically higher for switchgrass for all furnaces when compared to wood. PM and ash was analyzed for their chemical composition using inductively couple plasma-mass spectroscopy, atomic absorption spectroscopy, and X-ray fluorescence. It was found that most of the non-volatile elements and heavy metals remained in the bottom ash. Sulfate and potassium contributed to about 25-50% of the fine particle (PM2.5) mass. More clinker formation was observed in the horizontal auger feed (furnace 1) as a result of alkali release and subsequent melting of potassium silicate. The furnace with the least operational problems during switchgrass combustion was further studied with a catalytic retrofit to reduce the emissions. After the retrofit, the CO emissions were reduced by about 80%. However, an increase in NOx emissions was observed likely as a result of the formation of thermal NOx. The catalysts also oxidized some of the soot particles (elemental carbon) and hydrocarbons (organic carbon and volatile organic compounds) formed from the incomplete combustion and slightly reduced the PM emissions.

UR - http://www.scopus.com/inward/record.url?scp=84966263785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966263785&partnerID=8YFLogxK

U2 - 10.1021/acs.energyfuels.5b02624

DO - 10.1021/acs.energyfuels.5b02624

M3 - Article

AN - SCOPUS:84966263785

VL - 30

SP - 2958

EP - 2967

JO - Energy & Fuels

JF - Energy & Fuels

SN - 0887-0624

IS - 4

ER -