TY - JOUR
T1 - Combining Environmental Monitoring and Remote Sensing Technologies to Evaluate Cropping System Nitrogen Dynamics at the Field-Scale
AU - Preza Fontes, Giovani
AU - Bhattarai, Rabin
AU - Christianson, Laura E.
AU - Pittelkow, Cameron M.
N1 - Funding Information:
The authors would like to express appreciation to Kristin Greer, Cheri Esgar, Camila Martins, Juan Burjel, Daniel Hiatt, Hannah Dougherty, and Jonathan Mrozek for assisting with field data collection and laboratory analysis. Funding. This material is based upon work supported by the Dudley Smith Initiative in the College of Agricultural, Consumer, and Environmental Sciences at the University of Illinois at Urbana-Champaign, the Illinois Nutrient Research and Education Council (NREC 27-16 UI), the Foundation for Food and Agriculture Research, the International Plant Nutrition Institute, and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project (No. ILLU-802-949).
Funding Information:
This material is based upon work supported by the Dudley Smith Initiative in the College of Agricultural, Consumer, and Environmental Sciences at the University of Illinois at Urbana-Champaign, the Illinois Nutrient Research and Education Council (NREC 27-16 UI), the Foundation for Food and Agriculture Research, the International Plant Nutrition Institute, and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project (No. ILLU-802-949).
PY - 2019/2/20
Y1 - 2019/2/20
N2 - Nitrogen (N) losses from cropping systems in the U.S. Midwest represent a major environmental and economic concern, negatively impacting water and air quality. While considerable research has investigated processes and controls of N losses in this region, significant knowledge gaps still exist, particularly related to the temporal and spatial variability of crop N uptake and environmental losses at the field-scale. The objectives of this study were (i) to describe the unique application of environmental monitoring and remote sensing technologies to quantify and evaluate relationships between artificial subsurface drainage nitrate (NO3-N) losses, soil nitrous oxide (N2O) emissions, soil N concentrations, corn (Zea mays L.) yield, and remote sensing vegetation indices, and (ii) to discuss the benefits and limitations of using recent developments in technology to monitor cropping system N dynamics at field-scale. Preliminary results showed important insights regarding temporal (when N losses primarily occurred) and spatial (measurement footprint) considerations when trying to link N2O and NO3-N leaching losses within a single study to assess relationship between crop productivity and environmental N losses. Remote sensing vegetation indices were significantly correlated with N2O emissions, indicating that new technologies (e.g., unmanned aerial vehicle platform) could represent an integrative tool for linking sustainability outcomes with improved agronomic efficiencies, with lower vegetation index values associated with poor crop performance and higher N2O emissions. However, the potential for unmanned aerial vehicle to evaluate water quality appears much more limited because NO3-N losses happened prior to early-season crop growth and image collection. Building on this work, we encourage future research to test the usefulness of remote sensing technologies for monitoring environmental quality, with the goal of providing timely and accurate information to enhance the efficiency and sustainability of food production.
AB - Nitrogen (N) losses from cropping systems in the U.S. Midwest represent a major environmental and economic concern, negatively impacting water and air quality. While considerable research has investigated processes and controls of N losses in this region, significant knowledge gaps still exist, particularly related to the temporal and spatial variability of crop N uptake and environmental losses at the field-scale. The objectives of this study were (i) to describe the unique application of environmental monitoring and remote sensing technologies to quantify and evaluate relationships between artificial subsurface drainage nitrate (NO3-N) losses, soil nitrous oxide (N2O) emissions, soil N concentrations, corn (Zea mays L.) yield, and remote sensing vegetation indices, and (ii) to discuss the benefits and limitations of using recent developments in technology to monitor cropping system N dynamics at field-scale. Preliminary results showed important insights regarding temporal (when N losses primarily occurred) and spatial (measurement footprint) considerations when trying to link N2O and NO3-N leaching losses within a single study to assess relationship between crop productivity and environmental N losses. Remote sensing vegetation indices were significantly correlated with N2O emissions, indicating that new technologies (e.g., unmanned aerial vehicle platform) could represent an integrative tool for linking sustainability outcomes with improved agronomic efficiencies, with lower vegetation index values associated with poor crop performance and higher N2O emissions. However, the potential for unmanned aerial vehicle to evaluate water quality appears much more limited because NO3-N losses happened prior to early-season crop growth and image collection. Building on this work, we encourage future research to test the usefulness of remote sensing technologies for monitoring environmental quality, with the goal of providing timely and accurate information to enhance the efficiency and sustainability of food production.
KW - environmental monitoring
KW - nitrate leaching
KW - nitrogen dynamics
KW - nitrous oxide emissions
KW - remote sensing
KW - sustainable food production
UR - http://www.scopus.com/inward/record.url?scp=85076023746&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076023746&partnerID=8YFLogxK
U2 - 10.3389/fsufs.2019.00008
DO - 10.3389/fsufs.2019.00008
M3 - Article
AN - SCOPUS:85076023746
SN - 2571-581X
VL - 3
JO - Frontiers in Sustainable Food Systems
JF - Frontiers in Sustainable Food Systems
M1 - 8
ER -