Abstract
We consider the rank polynomial of a matroid and some well-known applications to graphs and linear codes. We compare rank polynomials with two-variable zeta functions for algebraic curves. This leads us to normalize the rank polynomial and to extend it to a rational rank function. As applications to linear codes we mention: A formulation of Greene's theorem similar to an identity for zeta functions of curves first found by Deninger, the definition of a class of generating functions for support weight enumerators, and a relation for algebraic-geometric codes between the matroid of a code and the two-variable zeta function of a curve.
Original language | English (US) |
---|---|
Pages (from-to) | 109-136 |
Number of pages | 28 |
Journal | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Volume | 2948 |
State | Published - 2004 |
ASJC Scopus subject areas
- Theoretical Computer Science
- Computer Science(all)