Combinatorics of the s-fraktur signl-fraktur sign2 spaces of coinvariants

B. Feigin, S. Loktev, R. Kedem, T. Miwa, E. Mukhin

Research output: Contribution to journalArticle

Abstract

We consider two types of quotients of the integrable modules of s-fraktur signl-fraktur sign2. These spaces of coin variants have dimensions described in terms of the Verlinde algebra of level k. We describe monomial bases for the spaces of coinvariants, which leads to a fermionic description of these spaces. For k = 1, we give explicit formulas for the characters. We also present recursion relations satisfied by the characters and the monomial bases.

Original languageEnglish (US)
Pages (from-to)25-52
Number of pages28
JournalTransformation Groups
Volume6
Issue number1
DOIs
StatePublished - Mar 1 2001
Externally publishedYes

Fingerprint

Combinatorics
Monomial
Recursion Relations
Explicit Formula
Quotient
Module
Algebra
Character

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Combinatorics of the s-fraktur signl-fraktur sign2 spaces of coinvariants. / Feigin, B.; Loktev, S.; Kedem, R.; Miwa, T.; Mukhin, E.

In: Transformation Groups, Vol. 6, No. 1, 01.03.2001, p. 25-52.

Research output: Contribution to journalArticle

Feigin, B. ; Loktev, S. ; Kedem, R. ; Miwa, T. ; Mukhin, E. / Combinatorics of the s-fraktur signl-fraktur sign2 spaces of coinvariants. In: Transformation Groups. 2001 ; Vol. 6, No. 1. pp. 25-52.
@article{0947bed858154781a90558b67b8fe30d,
title = "Combinatorics of the s-fraktur signl-fraktur sign2 spaces of coinvariants",
abstract = "We consider two types of quotients of the integrable modules of s-fraktur signl-fraktur sign2. These spaces of coin variants have dimensions described in terms of the Verlinde algebra of level k. We describe monomial bases for the spaces of coinvariants, which leads to a fermionic description of these spaces. For k = 1, we give explicit formulas for the characters. We also present recursion relations satisfied by the characters and the monomial bases.",
author = "B. Feigin and S. Loktev and R. Kedem and T. Miwa and E. Mukhin",
year = "2001",
month = "3",
day = "1",
doi = "10.1007/BF01236061",
language = "English (US)",
volume = "6",
pages = "25--52",
journal = "Transformation Groups",
issn = "1083-4362",
publisher = "Birkhause Boston",
number = "1",

}

TY - JOUR

T1 - Combinatorics of the s-fraktur signl-fraktur sign2 spaces of coinvariants

AU - Feigin, B.

AU - Loktev, S.

AU - Kedem, R.

AU - Miwa, T.

AU - Mukhin, E.

PY - 2001/3/1

Y1 - 2001/3/1

N2 - We consider two types of quotients of the integrable modules of s-fraktur signl-fraktur sign2. These spaces of coin variants have dimensions described in terms of the Verlinde algebra of level k. We describe monomial bases for the spaces of coinvariants, which leads to a fermionic description of these spaces. For k = 1, we give explicit formulas for the characters. We also present recursion relations satisfied by the characters and the monomial bases.

AB - We consider two types of quotients of the integrable modules of s-fraktur signl-fraktur sign2. These spaces of coin variants have dimensions described in terms of the Verlinde algebra of level k. We describe monomial bases for the spaces of coinvariants, which leads to a fermionic description of these spaces. For k = 1, we give explicit formulas for the characters. We also present recursion relations satisfied by the characters and the monomial bases.

UR - http://www.scopus.com/inward/record.url?scp=0035285637&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035285637&partnerID=8YFLogxK

U2 - 10.1007/BF01236061

DO - 10.1007/BF01236061

M3 - Article

AN - SCOPUS:0035285637

VL - 6

SP - 25

EP - 52

JO - Transformation Groups

JF - Transformation Groups

SN - 1083-4362

IS - 1

ER -