Abstract
This Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier κ_{λ}=λ_{HHH}/λ_{HHH}^{SM}, and the quartic HHVV coupling modifier κ_{2V}=g_{HHVV}/g_{HHVV}^{SM}, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are -1.2<κ_{λ}<7.2 and 0.6<κ_{2V}<1.5, respectively, while the expected intervals are -1.6<κ_{λ}<7.2 and 0.4<κ_{2V}<1.6 in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Original language | English (US) |
---|---|
Article number | 101801 |
Journal | Physical review letters |
Volume | 133 |
Issue number | 10 |
DOIs | |
State | Published - Sep 6 2024 |
ASJC Scopus subject areas
- General Physics and Astronomy
Fingerprint
Dive into the research topics of 'Combination of Searches for Higgs Boson Pair Production in pp Collisions at sqrt[s]=13 TeV with the ATLAS Detector'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical review letters, Vol. 133, No. 10, 101801, 06.09.2024.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Combination of Searches for Higgs Boson Pair Production in pp Collisions at sqrt[s]=13 TeV with the ATLAS Detector
AU - Atlas Collaboration
AU - Aad, G.
AU - Aakvaag, E.
AU - Abbott, B.
AU - Abdelhameed, S.
AU - Abeling, K.
AU - Abicht, N. J.
AU - Abidi, S. H.
AU - Aboelela, M.
AU - Aboulhorma, A.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Acharya, B. S.
AU - Ackermann, A.
AU - Adam Bourdarios, C.
AU - Adamczyk, L.
AU - Addepalli, S. V.
AU - Addison, M. J.
AU - Adelman, J.
AU - Adiguzel, A.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agaras, M. N.
AU - Agarwala, J.
AU - Aggarwal, A.
AU - Agheorghiesei, C.
AU - Ahmadov, F.
AU - Ahmed, W. S.
AU - Ahuja, S.
AU - Ai, X.
AU - Aielli, G.
AU - Aikot, A.
AU - Ait Tamlihat, M.
AU - Aitbenchikh, B.
AU - Akbiyik, M.
AU - Åkesson, T. P.A.
AU - Akimov, A. V.
AU - Akiyama, D.
AU - Akolkar, N. N.
AU - Aktas, S.
AU - Al Khoury, K.
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Albouy, G. L.
AU - Alderweireldt, S.
AU - Alegria, Z. L.
AU - Aleksa, M.
AU - Hooberman, B. H.
N1 - We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (United Kingdom), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. . We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARIS and MVZI, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; NSTC, Taipei; TENMAK, T\u00FCrkiye; STFC, United Kingdom; DOE and NSF, United States of America. Individual groups and members have received support from BCKDF, CANARIE, CRC, and DRAC, Canada; CERN-CZ, FORTE, and PRIMUS, Czech Republic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU, and Marie Sk\u0142odowska-Curie Actions, European Union; Investissements d\u2019Avenir Labex, Investissements d\u2019Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G\u00F6ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. In addition, individual members acknowledge support from Armenia: Yerevan Physics Institute (FAPERJ); CERN: European Organization for Nuclear Research (CERN PJAS); Chile: Agencia Nacional de Investigaci\u00F3n y Desarrollo (FONDECYT 1230812, FONDECYT 1230987, and FONDECYT 1240864); China: Chinese Ministry of Science and Technology (MOST-2023YFA1605700), National Natural Science Foundation of China (NSFC-12175119, NSFC 12275265, and NSFC-12075060); Czech Republic: Czech Science Foundation (GACR-24-11373S), Ministry of Education Youth and Sports (FORTE CZ.02.01.01/00/22_008/0004632), and PRIMUS Research Programme (PRIMUS/21/SCI/017); EU: H2020 European Research Council (ERC-101002463); European Union: European Research Council (ERC-948254 and ERC 101089007), Horizon 2020 Framework Programme (MUCCA-CHIST-ERA-19-XAI-00), European Union, Future Artificial Intelligence Research (FAIR-NextGenerationEU PE00000013), Italian Center for High Performance Computing, Big Data and Quantum Computing (ICSC, NextGenerationEU); France: Agence Nationale de la Recherche (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-21-CE31-0022, ANR-22-EDIR-0002), Investissements d\u2019Avenir Labex (ANR-11-LABX-0012); Germany: Baden-W\u00FCrttemberg Stiftung (BW Stiftung-Postdoc Eliteprogramme), Deutsche Forschungsgemeinschaft (DFG-469666862 and DFG-CR 312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC, NextGenerationEU), Ministero dell\u2019Universit\u00E0 e della Ricerca (PRIN\u201420223N7F8K\u2014PNRR M4.C2.1.1); Japan: Japan Society for the Promotion of Science (JSPS KAKENHI JP22H01227, JSPS KAKENHI JP22H04944, JSPS KAKENHI JP22KK0227, and JSPS KAKENHI JP23KK0245); Netherlands: Netherlands Organisation for Scientific Research (NWO Veni 2020\u2014VI.Veni.202.179); Norway: Research Council of Norway (RCN-314472); Poland: Polish National Agency for Academic Exchange (PPN/PPO/2020/1/00002/U/00001), Polish National Science Centre (NCN 2021/42/E/ST2/00350, NCN OPUS nr 2022/47/B/ST2/03059, NCN UMO-2019/34/E/ST2/00393, UMO-2020/37/B/ST2/01043, UMO-2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148, and UMO-2023/49/B/ST2/04085); Slovenia: Slovenian Research Agency (ARIS Grant No. J1-3010); Spain: Generalitat Valenciana (Artemisa, FEDER, IDIFEDER/2018/048), Ministry of Science and Innovation (MCIN and NextGenEU PCI2022-135018-2, MICIN and FEDER PID2021-125273NB, RYC2019-028510-I, RYC2020-030254-I, RYC2021-031273-I, RYC2022-038164-I), PROMETEO and GenT Programmes Generalitat Valenciana (CIDEGENT/2019/027); Sweden: Swedish Research Council (Swedish Research Council 2023-04654, VR 2018-00482, VR 2022-03845, VR 2022-04683, VR 2023-03403, VR Grant No. 2021-03651), Knut and Alice Wallenberg Foundation (KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, and KAW 2022.0358); Switzerland: Swiss National Science Foundation (SNSF\u2014PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme Trust RPG-2020-004), Royal Society (NIF-R1-231091); United States of America: U.S. Department of Energy (ECA DE-AC02-76SF00515) and Neubauer Family Foundation. We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (United Kingdom), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [48]. We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARIS and MVZI, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; NSTC, Taipei; TENMAK, T\u00FCrkiye; STFC, United Kingdom; DOE and NSF, United States of America. Individual groups and members have received support from BCKDF, CANARIE, CRC, and DRAC, Canada; CERN-CZ, FORTE, and PRIMUS, Czech Republic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU, and Marie Sk\u0142odowska-Curie Actions, European Union; Investissements d\u2019Avenir Labex, Investissements d\u2019Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G\u00F6ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. In addition, individual members acknowledge support from Armenia: Yerevan Physics Institute (FAPERJ); CERN: European Organization for Nuclear Research (CERN PJAS); Chile: Agencia Nacional de Investigaci\u00F3n y Desarrollo (FONDECYT 1230812, FONDECYT 1230987, and FONDECYT 1240864); China: Chinese Ministry of Science and Technology (MOST-2023YFA1605700), National Natural Science Foundation of China (NSFC-12175119, NSFC 12275265, and NSFC-12075060); Czech Republic: Czech Science Foundation (GACR-24-11373S), Ministry of Education Youth and Sports (FORTE CZ.02.01.01/00/22_008/0004632), and PRIMUS Research Programme (PRIMUS/21/SCI/017); EU: H2020 European Research Council (ERC-101002463); European Union: European Research Council (ERC-948254 and ERC 101089007), Horizon 2020 Framework Programme (MUCCA-CHIST-ERA-19-XAI-00), European Union, Future Artificial Intelligence Research (FAIR-NextGenerationEU PE00000013), Italian Center for High Performance Computing, Big Data and Quantum Computing (ICSC, NextGenerationEU); France: Agence Nationale de la Recherche (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-21-CE31-0022, ANR-22-EDIR-0002), Investissements d\u2019Avenir Labex (ANR-11-LABX-0012); Germany: Baden-W\u00FCrttemberg Stiftung (BW Stiftung-Postdoc Eliteprogramme), Deutsche Forschungsgemeinschaft (DFG-469666862 and DFG-CR 312/5-2); Italy: Istituto Nazionale di Fisica Nucleare (ICSC, NextGenerationEU), Ministero dell\u2019Universit\u00E0 e della Ricerca (PRIN\u201420223N7F8K\u2014PNRR M4.C2.1.1); Japan: Japan Society for the Promotion of Science (JSPS KAKENHI JP22H01227, JSPS KAKENHI JP22H04944, JSPS KAKENHI JP22KK0227, and JSPS KAKENHI JP23KK0245); Netherlands: Netherlands Organisation for Scientific Research (NWO Veni 2020\u2014VI.Veni.202.179); Norway: Research Council of Norway (RCN-314472); Poland: Polish National Agency for Academic Exchange (PPN/PPO/2020/1/00002/U/00001), Polish National Science Centre (NCN 2021/42/E/ST2/00350, NCN OPUS nr 2022/47/B/ST2/03059, NCN UMO-2019/34/E/ST2/00393, UMO-2020/37/B/ST2/01043, UMO-2021/40/C/ST2/00187, UMO-2022/47/O/ST2/00148, and UMO-2023/49/B/ST2/04085); Slovenia: Slovenian Research Agency (ARIS Grant No. J1-3010); Spain: Generalitat Valenciana (Artemisa, FEDER, IDIFEDER/2018/048), Ministry of Science and Innovation (MCIN and NextGenEU PCI2022-135018-2, MICIN and FEDER PID2021-125273NB, RYC2019-028510-I, RYC2020-030254-I, RYC2021-031273-I, RYC2022-038164-I), PROMETEO and GenT Programmes Generalitat Valenciana (CIDEGENT/2019/027); Sweden: Swedish Research Council (Swedish Research Council 2023-04654, VR 2018-00482, VR 2022-03845, VR 2022-04683, VR 2023-03403, VR Grant No. 2021-03651), Knut and Alice Wallenberg Foundation (KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, and KAW 2022.0358); Switzerland: Swiss National Science Foundation (SNSF\u2014PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme Trust RPG-2020-004), Royal Society (NIF-R1-231091); United States of America: U.S. Department of Energy (ECA DE-AC02-76SF00515) and Neubauer Family Foundation.
PY - 2024/9/6
Y1 - 2024/9/6
N2 - This Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier κ_{λ}=λ_{HHH}/λ_{HHH}^{SM}, and the quartic HHVV coupling modifier κ_{2V}=g_{HHVV}/g_{HHVV}^{SM}, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are -1.2<κ_{λ}<7.2 and 0.6<κ_{2V}<1.5, respectively, while the expected intervals are -1.6<κ_{λ}<7.2 and 0.4<κ_{2V}<1.6 in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
AB - This Letter presents results from a combination of searches for Higgs boson pair production using 126-140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier κ_{λ}=λ_{HHH}/λ_{HHH}^{SM}, and the quartic HHVV coupling modifier κ_{2V}=g_{HHVV}/g_{HHVV}^{SM}, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are -1.2<κ_{λ}<7.2 and 0.6<κ_{2V}<1.5, respectively, while the expected intervals are -1.6<κ_{λ}<7.2 and 0.4<κ_{2V}<1.6 in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
UR - http://www.scopus.com/inward/record.url?scp=85204512594&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85204512594&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.133.101801
DO - 10.1103/PhysRevLett.133.101801
M3 - Article
C2 - 39303265
AN - SCOPUS:85204512594
SN - 0031-9007
VL - 133
JO - Physical review letters
JF - Physical review letters
IS - 10
M1 - 101801
ER -