Collective Multi-type Entity Alignment between Knowledge Graphs

Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph representing rich factual information among entities of various types. Entity alignment is the key step towards knowledge graph integration from multiple sources. It aims to identify entities across different knowledge graphs that refer to the same real world entity. However, current entity alignment systems overlook the sparsity of different knowledge graphs and can not align multi-type entities by one single model. In this paper, we present a Collective Graph neural network for Multi-type entity Alignment, called CG-MuAlign. Different from previous work, CG-MuAlign jointly aligns multiple types of entities, collectively leverages the neighborhood information and generalizes to unlabeled entity types. Specifically, we propose novel collective aggregation function tailored for this task, that (1) relieves the incompleteness of knowledge graphs via both cross-graph and self attentions, (2) scales up efficiently with mini-batch training paradigm and effective neighborhood sampling strategy. We conduct experiments on real world knowledge graphs with millions of entities and observe the superior performance beyond existing methods. In addition, the running time of our approach is much less than the current state-of-the-art deep learning methods.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020
PublisherAssociation for Computing Machinery, Inc
Pages2241-2252
Number of pages12
ISBN (Electronic)9781450370233
DOIs
StatePublished - Apr 20 2020
Event29th International World Wide Web Conference, WWW 2020 - Taipei, Taiwan, Province of China
Duration: Apr 20 2020Apr 24 2020

Publication series

NameThe Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020

Conference

Conference29th International World Wide Web Conference, WWW 2020
CountryTaiwan, Province of China
CityTaipei
Period4/20/204/24/20

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint Dive into the research topics of 'Collective Multi-type Entity Alignment between Knowledge Graphs'. Together they form a unique fingerprint.

Cite this