Abstract
Listeria monocytogenes is a bacterial parasite that uses host proteins to assemble an Arp2/3-dependent actin comet tail to power its movement through the host cell. Initiation of comet tail assembly is more efficient in cytosol than it is under defined conditions, indicating that unknown factors contribute to the reaction. We therefore fractionated cytosol and identified CRMP-1 as a factor that facilitates Arp2/3-dependent Listeria actin cloud formation in the presence of Arp2/3 and actin alone. It also scored as an important factor for Listeria actin comet tail formation in brain cytosol. CRMP-1 does not nucleate actin assembly on its own, nor does it directly activate the Arp2/3 complex. Rather, CRMP-1 scored as an auxiliary factor that promoted the ability of Listeria ActA protein to activate the Arp2/3 complex to trigger actin assembly. CRMP-1 is one member of a family of five related proteins that modulate cell motility in response to extracellular signals. Our results demonstrate an important role for CRMP-1 in Listeria actin comet tail formation and open the possibility that CRMP-1 controls cell motility by modulating Arp2/3 activation.
Original language | English (US) |
---|---|
Pages (from-to) | 658-664 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 291 |
Issue number | 2 |
DOIs | |
State | Published - Jan 8 2016 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology