TY - JOUR
T1 - Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram the Tumor Microenvironment in Canine Soft-Tissue Sarcomas
AU - Stinson, Jordan A.
AU - Sheen, Allison
AU - Momin, Noor
AU - Hampel, Jordan
AU - Bernstein, Rebecca
AU - Kamerer, Rebecca
AU - Fadl-Alla, Bahaa
AU - Samuelson, Jonathan
AU - Fink, Elizabeth
AU - Fan, Timothy M.
AU - Wittrup, K. Dane
N1 - Publisher Copyright:
© 2023 American Association for Cancer Research.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Purpose: Cytokine therapies such as IL2 and IL12 suffer from impractically small therapeutic windows driven by their on-target, off-tumor activity, limiting their clinical potential despite potent antitumor effects. We previously engineered cytokines that bind and anchor to tumor collagen following intratumoral injection, and sought to test their safety and biomarker activity in spontaneous canine soft-tissue sarcomas (STS). Experimental Design: Collagen-binding cytokines were canine-ized to minimize immunogenicity and were used in a rapid dose-escalation study in healthy beagles to identify a maximum tolerated dose. Ten client-owned pet dogs with STS were then enrolled into trial, receiving cytokines at different intervals prior to surgical tumor excision. Tumor tissue was analyzed through IHC and NanoString RNA profiling for dynamic changes within treated tumors. Archived, untreated STS samples were analyzed in parallel as controls. Results: Intratumorally administered collagen-binding IL2 and IL12 were well tolerated by STS-bearing dogs, with only Grade 1/2 adverse events observed (mild fever, thrombocytopenia, neutropenia). IHC revealed enhanced T-cell infiltrates, corroborated by an enhancement in gene expression associated with cytotoxic immune function. We found concordant increases in expression of counter-regulatory genes that we hypothesize would contribute to a transient antitumor effect, and confirmed in mouse models that combination therapy to inhibit this counter-regulation can improve responses to cytokine therapy. Conclusions: These results support the safety and activity of intratumorally delivered, collagen-anchoring cytokines for inflammatory polarization of the canine STS tumor microenvironment. We are further evaluating the efficacy of this approach in additional canine cancers, including oral malignant melanoma.
AB - Purpose: Cytokine therapies such as IL2 and IL12 suffer from impractically small therapeutic windows driven by their on-target, off-tumor activity, limiting their clinical potential despite potent antitumor effects. We previously engineered cytokines that bind and anchor to tumor collagen following intratumoral injection, and sought to test their safety and biomarker activity in spontaneous canine soft-tissue sarcomas (STS). Experimental Design: Collagen-binding cytokines were canine-ized to minimize immunogenicity and were used in a rapid dose-escalation study in healthy beagles to identify a maximum tolerated dose. Ten client-owned pet dogs with STS were then enrolled into trial, receiving cytokines at different intervals prior to surgical tumor excision. Tumor tissue was analyzed through IHC and NanoString RNA profiling for dynamic changes within treated tumors. Archived, untreated STS samples were analyzed in parallel as controls. Results: Intratumorally administered collagen-binding IL2 and IL12 were well tolerated by STS-bearing dogs, with only Grade 1/2 adverse events observed (mild fever, thrombocytopenia, neutropenia). IHC revealed enhanced T-cell infiltrates, corroborated by an enhancement in gene expression associated with cytotoxic immune function. We found concordant increases in expression of counter-regulatory genes that we hypothesize would contribute to a transient antitumor effect, and confirmed in mouse models that combination therapy to inhibit this counter-regulation can improve responses to cytokine therapy. Conclusions: These results support the safety and activity of intratumorally delivered, collagen-anchoring cytokines for inflammatory polarization of the canine STS tumor microenvironment. We are further evaluating the efficacy of this approach in additional canine cancers, including oral malignant melanoma.
UR - http://www.scopus.com/inward/record.url?scp=85160965549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160965549&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-23-0006
DO - 10.1158/1078-0432.CCR-23-0006
M3 - Article
C2 - 37014656
AN - SCOPUS:85160965549
SN - 1078-0432
VL - 29
SP - 2110
EP - 2122
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 11
ER -