Collaborative Deep Learning for speech enhancement: A run-time model selection method using autoencoders

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We show that a Modular Neural Network (MNN) can combine various speech enhancement modules, each of which is a Deep Neural Network (DNN) specialized on a particular enhancement job. Differently from an ordinary ensemble technique that averages variations in models, the propose MNN selects the best module for the unseen test signal to produce a greedy ensemble. We see this as Collaborative Deep Learning (CDL), because it can reuse various already-trained DNN models without any further refining. In the proposed MNN selecting the best module during run time is challenging. To this end, we employ a speech AutoEncoder (AE) as an arbitrator, whose input and output are trained to be as similar as possible if its input is clean speech. Therefore, the AE can gauge the quality of the module-specific denoised result by seeing its AE reconstruction error, e.g. low error means that the module output is similar to clean speech. We propose an MNN structure with various modules that are specialized on dealing with a specific noise type, gender, and input Signal-to-Noise Ratio (SNR) value, and empirically prove that it almost always works better than an arbitrarily chosen DNN module and sometimes as good as an oracle result.

Original languageEnglish (US)
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages76-80
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - Jun 16 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: Mar 5 2017Mar 9 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period3/5/173/9/17

Keywords

  • Autoencoders
  • Deep Learning
  • Modular Neural Networks
  • Source Separation
  • Speech Enhancement

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Collaborative Deep Learning for speech enhancement: A run-time model selection method using autoencoders'. Together they form a unique fingerprint.

Cite this