Coherent information for Calderbank-Shor-Steane codes under decoherence

Ryotaro Niwa, Jong Yeon Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Stabilizer codes lie at the heart of modern quantum-error-correcting codes (QECCs). Of particular importance is a class called Calderbank-Shor-Steane (CSS) codes, which includes many important examples such as toric codes, color codes, and fractons. Recent studies have revealed that the decoding transition for these QECCs could be intrinsically captured by calculating information-theoretic quantities from the mixed state. Here we perform a simple analytic calculation of the coherent information for general CSS codes under local incoherent Pauli errors via diagonalization of the density matrices and mapping to classical statistical mechanical (SM) models. Our result establishes a rigorous connection between the decoding transition of the quantum code and the phase transition in the random classical SM model. It is also directly confirmed for CSS codes that exact error correction is possible if and only if the maximum-likelihood decoder always succeeds in the thermodynamic limit. Thus, the fundamental threshold is saturated by the optimal decoder.

Original languageEnglish (US)
Article number032402
JournalPhysical Review A
Volume111
Issue number3
DOIs
StatePublished - Mar 2025

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Coherent information for Calderbank-Shor-Steane codes under decoherence'. Together they form a unique fingerprint.

Cite this