CogcompnLP: Your Swiss army knife for NLP

Daniel Khashabi, Mark Sammons, Ben Zhou, Tom Redman, Christos Christodoulopoulos, Vivek Srikumar, Nicholas Rizzolo, Lev Ratinov Guanheng Luo, Quang Do, Chen Tse Tsai, Subhro Roy, Stephen Mayhew, Zhili Feng, John Wieting, Xiaodong Yu, Yangqiu Song, Shashank Gupta, Shyam Upadhyay, Naveen Arivazhagan, Qiang NingShaoshi Ling, Dan Roth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Implementing a Natural Language Processing (NLP) system requires considerable engineering effort: creating data-structures to represent language constructs; reading corpora annotations into these data-structures; applying off-the-shelf NLP tools to augment the text representation; extracting features and training machine learning components; conducting experiments and computing performance statistics; and creating the end-user application that integrates the implemented components. While there are several widely used NLP libraries, each provides only partial coverage of these various tasks. We present our library COGCOMPNLP which simplifies the process of design and development of NLP applications by providing modules to address different challenges: we provide a corpus-reader module that supports popular corpora in the NLP community, a module for various low-level data-structures and operations (such as search over text), a module for feature extraction, and an extensive suite of annotation modules for a wide range of semantic and syntactic tasks. These annotation modules are all integrated in a single system, PIPELINE, which allows users to easily use the annotators with simple direct calls using any JVM-based language, or over a network. The sister project COGCOMPNLPY enables users to access the annotators with a Python interface. We give a detailed account of our system's structure and usage, and where possible, compare it with other established NLP frameworks. We report on the performance, including time and memory statistics, of each component on a selection of well-established datasets. Our system is publicly available for research use and external contributions, at: http://github.com/CogComp/cogcomp-nlp.

Original languageEnglish (US)
Title of host publicationLREC 2018 - 11th International Conference on Language Resources and Evaluation
EditorsHitoshi Isahara, Bente Maegaard, Stelios Piperidis, Christopher Cieri, Thierry Declerck, Koiti Hasida, Helene Mazo, Khalid Choukri, Sara Goggi, Joseph Mariani, Asuncion Moreno, Nicoletta Calzolari, Jan Odijk, Takenobu Tokunaga
PublisherEuropean Language Resources Association (ELRA)
Pages541-549
Number of pages9
ISBN (Electronic)9791095546009
StatePublished - 2019
Event11th International Conference on Language Resources and Evaluation, LREC 2018 - Miyazaki, Japan
Duration: May 7 2018May 12 2018

Publication series

NameLREC 2018 - 11th International Conference on Language Resources and Evaluation

Other

Other11th International Conference on Language Resources and Evaluation, LREC 2018
CountryJapan
CityMiyazaki
Period5/7/185/12/18

ASJC Scopus subject areas

  • Linguistics and Language
  • Education
  • Library and Information Sciences
  • Language and Linguistics

Fingerprint Dive into the research topics of 'CogcompnLP: Your Swiss army knife for NLP'. Together they form a unique fingerprint.

Cite this