Code Construction and Decoding Algorithms for Semi-Quantitative Group Testing with Nonuniform Thresholds

Research output: Contribution to journalArticlepeer-review

Abstract

We analyze a new group-testing scheme, termed semi-quantitative group testing, which may be viewed as a concatenation of an adder channel and a discrete quantizer. Our focus is on non-uniform quantizers with arbitrary thresholds. For the most general semi-quantitative group-testing model, we define three new families of sequences capturing the constraints on the code design imposed by the choice of the thresholds. The sequences represent extensions and generalizations of $B-{h}$ and certain types of super-increasing and lexicographically ordered sequences, and they lead to code structures amenable for efficient recursive decoding. We describe the decoding methods and provide an accompanying computational complexity and performance analysis.

Original languageEnglish (US)
Article number7398035
Pages (from-to)1674-1687
Number of pages14
JournalIEEE Transactions on Information Theory
Volume62
Issue number4
DOIs
StatePublished - Apr 1 2016

Keywords

  • Bh sequences
  • decoding algorithms
  • disjunct codes
  • group testing
  • lexicographically ordered sequences
  • quantized adder channel
  • semi-quantitative group testing
  • super-increasing sequences

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Code Construction and Decoding Algorithms for Semi-Quantitative Group Testing with Nonuniform Thresholds'. Together they form a unique fingerprint.

Cite this