Abstract
Composting has been recognized as a viable method to dispose of animal carcasses. Common concerns related to the composting process include low core temperatures, leachate generation, and ammonia emissions. This study tested co-composting full-size poultry carcasses with commercially available biochars at an aeration rate of 0.8 L∙min−1. Biochars prepared by gasifying wood pallets, distillers’ grains, and cow manure were added to the composting bins at the 13% rate (by volume). Results showed that poultry carcasses with wood-based and cow manure biochar increased temperatures by 2.0 to 3.3 °C. All biochar-amended bins met the time–temperature criteria to eliminate avian influenza (H7N1) viruses, which could not be achieved without biochar addition. Wood-based biochar amendment lowered the cumulative chemical oxygen demand of the leachate samples by 87% (P = 0.02). At the rate studied, the biochar amendment did not significantly affect ammonia emissions (P = 0.56). BET surface area of wood-based biochar was 1.4 and 28 times greater than that of cow manure and distillers’ grain biochar, respectively. Compared to no biochar addition, wood-based biochar resulted in significantly higher compost temperatures (P = 0.02), lower leachate COD values (P = 0.02), and a higher total nitrogen content (P = 0.01) while it did not cause an increase in sodium content (P = 0.94) of the finished compost. In conclusion, amending the poultry carcass composting process with wood-based biochar (13% by volume) is recommended, especially to eliminate disease-causing agents.
Original language | English (US) |
---|---|
Pages (from-to) | 84-91 |
Number of pages | 8 |
Journal | Waste Management |
Volume | 161 |
DOIs | |
State | Published - Apr 15 2023 |
Externally published | Yes |
Keywords
- Biochar
- Chemical oxygen demand
- Compost
- Nitrogen
- Poultry
- Temperature
ASJC Scopus subject areas
- Waste Management and Disposal