ClusCite: Effective citation recommendation by information network-based clustering

Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal, Quanquan Gu, Lidan Wang, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Citation recommendation is an interesting but challenging research problem. Most existing studies assume that all papers adopt the same criterion and follow the same behavioral pattern in deciding relevance and authority of a paper. However, in reality, papers have distinct citation behavioral patterns when looking for different references, depending on paper content, authors and target venues. In this study, we investigate the problem in the context of heterogeneous bibliographic networks and propose a novel cluster-based citation recommendation framework, called ClusCite, which explores the principle that citations tend to be softly clustered into interest groups based on multiple types of relationships in the network. Therefore, we predict each query's citations based on related interest groups, each having its own model for paper authority and relevance. Specifically, we learn group memberships for objects and the significance of relevance features for each interest group, while also propagating relative authority between objects, by solving a joint optimization problem. Experiments on both DBLP and PubMed datasets demonstrate the power of the proposed approach, with 17.68% improvement in Recall@50 and 9.57% growth in MRR over the best performing baseline.

Original languageEnglish (US)
Title of host publicationKDD 2014 - Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages821-830
Number of pages10
ISBN (Print)9781450329569
DOIs
StatePublished - 2014
Event20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014 - New York, NY, United States
Duration: Aug 24 2014Aug 27 2014

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Other

Other20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014
Country/TerritoryUnited States
CityNew York, NY
Period8/24/148/27/14

Keywords

  • citation behavioral pattern
  • citation recommendation
  • clustering
  • heterogeneous information network

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'ClusCite: Effective citation recommendation by information network-based clustering'. Together they form a unique fingerprint.

Cite this