Cloud phase characteristics over Southeast Asia from A-Train satellite observations

Yulan Hong, Larry Di Girolamo

Research output: Contribution to journalArticlepeer-review

Abstract

This study examines the climatology of cloud phase over Southeast Asia (SEA) based on A-Train satellite observations. Using the combined CloudSat.CALIPSO (CC) data, five main cloud groups are investigated: Ice-only, ice-above-liquid, liquid-only, ice-above-mixed, and mixedonly clouds that have annual mean frequencies of 28.6 %, 20.1 %, 16.0 %, 9.3 %, and 6.7 %, respectively. Liquid-only clouds tend to occur in relatively cold, dry, and stable lower troposphere. The other four cloud groups appear more frequently in relatively warm, humid, and unstable conditions, and their seasonal distributions move with the Asian monsoon and the Intertropical Convergence Zone (ITCZ). Liquid clouds are found to be highly inhomogeneous based on the heterogeneity index (Hσ ) from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), while iceonly and mixed-only clouds are often very smooth. Iceabove-liquid clouds are more heterogeneous than ice-only clouds owing to ice clouds being optically thin. We demonstrate that the distribution of clear-sky Hσ has a long tail towards heterogeneous values that are caused by undetected subpixel cloud within both CC and MODIS datasets. The reflectance at 0.645 μm (R0:645) and brightness temperature at 11 μm (BT11) of CC ice-only, liquid-only, and iceabove-liquid clouds show peak frequencies near that of clear sky (R0.645 ∼ 0.02; BT11 ∼ 294 K), which explains why up to 30% of these CC cloud groups are classified as clear by MODIS. In contrast, mixed-only clouds are thick (average top ∼ 13 km), bright (average R0:645 ∼ 0.6), and cold (average BT11 ∼ 234 K). Cloud phase comparison between CC and MODIS reveals only modest agreement, with the best agreement (73 %) occurring between CC ice-above-mixed and MODIS ice clouds. The intraseasonal and interannual behaviors of the all-sky Hσ and spectral signatures follow that of cloud phase and vary with the Madden.Julian oscillation (MJO) and the El Nino.Southern Oscillation (ENSO) phases.

Original languageEnglish (US)
Pages (from-to)8267-8291
Number of pages25
JournalAtmospheric Chemistry and Physics
Volume20
Issue number13
DOIs
StatePublished - Jul 16 2020

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Cloud phase characteristics over Southeast Asia from A-Train satellite observations'. Together they form a unique fingerprint.

Cite this