TY - JOUR
T1 - Cloud phase characteristics over Southeast Asia from A-Train satellite observations
AU - Hong, Yulan
AU - Di Girolamo, Larry
N1 - Publisher Copyright:
© 2020 Author(s).
PY - 2020/7/16
Y1 - 2020/7/16
N2 - This study examines the climatology of cloud phase over Southeast Asia (SEA) based on A-Train satellite observations. Using the combined CloudSat.CALIPSO (CC) data, five main cloud groups are investigated: Ice-only, ice-above-liquid, liquid-only, ice-above-mixed, and mixedonly clouds that have annual mean frequencies of 28.6 %, 20.1 %, 16.0 %, 9.3 %, and 6.7 %, respectively. Liquid-only clouds tend to occur in relatively cold, dry, and stable lower troposphere. The other four cloud groups appear more frequently in relatively warm, humid, and unstable conditions, and their seasonal distributions move with the Asian monsoon and the Intertropical Convergence Zone (ITCZ). Liquid clouds are found to be highly inhomogeneous based on the heterogeneity index (Hσ ) from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), while iceonly and mixed-only clouds are often very smooth. Iceabove-liquid clouds are more heterogeneous than ice-only clouds owing to ice clouds being optically thin. We demonstrate that the distribution of clear-sky Hσ has a long tail towards heterogeneous values that are caused by undetected subpixel cloud within both CC and MODIS datasets. The reflectance at 0.645 μm (R0:645) and brightness temperature at 11 μm (BT11) of CC ice-only, liquid-only, and iceabove-liquid clouds show peak frequencies near that of clear sky (R0.645 ∼ 0.02; BT11 ∼ 294 K), which explains why up to 30% of these CC cloud groups are classified as clear by MODIS. In contrast, mixed-only clouds are thick (average top ∼ 13 km), bright (average R0:645 ∼ 0.6), and cold (average BT11 ∼ 234 K). Cloud phase comparison between CC and MODIS reveals only modest agreement, with the best agreement (73 %) occurring between CC ice-above-mixed and MODIS ice clouds. The intraseasonal and interannual behaviors of the all-sky Hσ and spectral signatures follow that of cloud phase and vary with the Madden.Julian oscillation (MJO) and the El Nino.Southern Oscillation (ENSO) phases.
AB - This study examines the climatology of cloud phase over Southeast Asia (SEA) based on A-Train satellite observations. Using the combined CloudSat.CALIPSO (CC) data, five main cloud groups are investigated: Ice-only, ice-above-liquid, liquid-only, ice-above-mixed, and mixedonly clouds that have annual mean frequencies of 28.6 %, 20.1 %, 16.0 %, 9.3 %, and 6.7 %, respectively. Liquid-only clouds tend to occur in relatively cold, dry, and stable lower troposphere. The other four cloud groups appear more frequently in relatively warm, humid, and unstable conditions, and their seasonal distributions move with the Asian monsoon and the Intertropical Convergence Zone (ITCZ). Liquid clouds are found to be highly inhomogeneous based on the heterogeneity index (Hσ ) from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), while iceonly and mixed-only clouds are often very smooth. Iceabove-liquid clouds are more heterogeneous than ice-only clouds owing to ice clouds being optically thin. We demonstrate that the distribution of clear-sky Hσ has a long tail towards heterogeneous values that are caused by undetected subpixel cloud within both CC and MODIS datasets. The reflectance at 0.645 μm (R0:645) and brightness temperature at 11 μm (BT11) of CC ice-only, liquid-only, and iceabove-liquid clouds show peak frequencies near that of clear sky (R0.645 ∼ 0.02; BT11 ∼ 294 K), which explains why up to 30% of these CC cloud groups are classified as clear by MODIS. In contrast, mixed-only clouds are thick (average top ∼ 13 km), bright (average R0:645 ∼ 0.6), and cold (average BT11 ∼ 234 K). Cloud phase comparison between CC and MODIS reveals only modest agreement, with the best agreement (73 %) occurring between CC ice-above-mixed and MODIS ice clouds. The intraseasonal and interannual behaviors of the all-sky Hσ and spectral signatures follow that of cloud phase and vary with the Madden.Julian oscillation (MJO) and the El Nino.Southern Oscillation (ENSO) phases.
UR - http://www.scopus.com/inward/record.url?scp=85089125481&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089125481&partnerID=8YFLogxK
U2 - 10.5194/acp-20-8267-2020
DO - 10.5194/acp-20-8267-2020
M3 - Article
AN - SCOPUS:85089125481
SN - 1680-7316
VL - 20
SP - 8267
EP - 8291
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 13
ER -