CLIP-Event: Connecting Text and Images with Event Structures

Manling Li, Ruochen Xu, Shuohang Wang, Luowei Zhou, Xudong Lin, Chenguang Zhu, Michael Zeng, Heng Ji, Shih Fu Chang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Vision-language (V+L) pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models primarily focus on understanding objects in images or entities in text, they often ignore the alignment at the level of events and their argument structures. In this work, we propose a contrastive learning framework to enforce vision-language pretraining models to comprehend events and associated argument (participant) roles. To achieve this, we take advantage of text information extraction technologies to obtain event structural knowledge, and utilize multiple prompt functions to contrast difficult negative descriptions by manipulating event structures. We also design an event graph alignment loss based on optimal transport to capture event argument structures. In addition, we collect a large event-rich dataset (106,875 images) for pretraining, which provides a more challenging image retrieval benchmark to assess the understanding of complicated lengthy sentences11The data and code are publicly available for research purpose in https://github.com/limanling/clip-event.. Experiments show that our zero-shot CLIP-Event outperforms the state-of-the-art supervised model in argument extraction on Multimedia Event Extraction, achieving more than 5% absolute F-score gain in event extraction, as well as significant improvements on a variety of downstream tasks under zero-shot settings.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages16399-16408
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Keywords

  • Vision + language

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'CLIP-Event: Connecting Text and Images with Event Structures'. Together they form a unique fingerprint.

Cite this