Clinically Relevant Latent Space Embedding of Cancer Histopathology Slides Through Variational Autoencoder based Image Compression

Mohammad Sadegh Nasr, Amir Hajighasemi, Paul Koomey, Parisa Boodaghi Malidarreh, Michael Robben, Jillur Rahman Saurav, Helen H. Shang, Manfred Huber, Jacob M. Luber

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we introduce a Variational Autoencoder (VAE) based training approach that can compress and decompress cancer pathology slides at a compression ratio of 1:512, which is better than the previously reported state of the art (SOTA) in the literature, while still maintaining accuracy in clinical validation tasks. The compression approach was tested on more common computer vision datasets such as CIFAR10, and we explore which image characteristics enable this compression ratio on cancer imaging data but not generic images. We generate and visualize embeddings from the compressed latent space and demonstrate how they are useful for clinical interpretation of data, and how in the future such latent embeddings can be used to accelerate search of clinical imaging data.

Original languageEnglish (US)
Title of host publication2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665473583
DOIs
StatePublished - 2023
Externally publishedYes
Event20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
Duration: Apr 18 2023Apr 21 2023

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2023-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Country/TerritoryColombia
CityCartagena
Period4/18/234/21/23

Keywords

  • Histopathology cancer slides
  • autoencoder
  • clinical image search
  • image compression
  • latent space

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Clinically Relevant Latent Space Embedding of Cancer Histopathology Slides Through Variational Autoencoder based Image Compression'. Together they form a unique fingerprint.

Cite this