Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

Eric T. Hileman, Richard B. King, John M. Adamski, Thomas G. Anton, Robyn L. Bailey, Sarah J. Baker, Nickolas D. Bieser, Thomas A. Bell, Kristin M. Bissell, Danielle R. Bradke, Henry Campa, Gary S. Casper, Karen Cedar, Matthew D. Cross, Brett A. DeGregorio, Michael J. Dreslik, Lisa J. Faust, Daniel S. Harvey, Robert W. Hay, Benjamin C. JellenBrent D. Johnson, Glenn Johnson, Brooke D. Kiel, Bruce A. Kingsbury, Matthew J. Kowalski, Yu Man Lee, Andrew M. Lentini, John C. Marshall, David Mauger, Jennifer A. Moore, Rori A. Paloski, Christopher A. Phillips, Paul D. Pratt, Thomas Preney, Kent A. Prior, Andrew Promaine, Michael Redmer, Howard K. Reinert, Jeremy D. Rouse, Kevin T. Shoemaker, Scott Sutton, Terry J. VanDeWalle, Patrick J. Weatherhead, Doug Wynn, Anne Yagi

Research output: Contribution to journalArticle

Abstract

Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change.

Original languageEnglish (US)
Article numbere0172011
JournalPloS one
Volume12
Issue number2
DOIs
StatePublished - Feb 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis'. Together they form a unique fingerprint.

  • Cite this

    Hileman, E. T., King, R. B., Adamski, J. M., Anton, T. G., Bailey, R. L., Baker, S. J., Bieser, N. D., Bell, T. A., Bissell, K. M., Bradke, D. R., Campa, H., Casper, G. S., Cedar, K., Cross, M. D., DeGregorio, B. A., Dreslik, M. J., Faust, L. J., Harvey, D. S., Hay, R. W., ... Yagi, A. (2017). Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis. PloS one, 12(2), [e0172011]. https://doi.org/10.1371/journal.pone.0172011