Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa

M. Godefroid, M. Morente, T. Schartel, D. Cornara, A. Purcell, D. Gallego, A. Moreno, J. A. Pereira, A. Fereres

Research output: Contribution to journalArticlepeer-review


The bacterium Xylella fastidiosa (Xf) is an invasive insect-borne pathogen, which causes lethal diseases to important crops including olives, citrus, almonds and grapes as well as numerous forest, ornamental, and uncultivated plants. Outbreaks of Xf-related plant diseases are currently occurring in the Mediterranean region, causing substantial losses to various agricultural sectors. Several models have recently been published to identify which regions are at highest risk in Europe; however, such models did not consider the insect vectors, which constitute the key driver of short-range Xf spread. We fitted bioclimatic species distribution models to depict the macroclimatic preferences of the meadow spittlebug Philaenus spumarius L. (1978) (Hemiptera: Aphrophoridae), the major epidemiologically relevant vector currently responsible for Xf spread in the Europe. Many regions of Western Europe and Mediterranean basin are predicted by models as highly climatically suitable for this vector, including all regions where severe Xf have occurred so far. Conversely, the driest and warmest areas of the Mediterranean basin are predicted as little suitable for P. spumarius. Models forecast that agricultural-important parts of the southern Mediterranean area might experience a substantial decrease in climatic suitability for P. spumarius by the period 2040–2060. Areas predicted as highly suitable just for the bacterium but not optimal for this vector are apparently still free of severe Xf outbreaks, suggesting that climate tolerances of P. spumarius might partly explain the current spatial pattern of Xf outbreaks in Europe and should always be considered in further risk assessments.

Original languageEnglish (US)
Pages (from-to)855-868
Number of pages14
JournalJournal of Pest Science
Issue number2
StatePublished - Mar 2022
Externally publishedYes


  • Ensemble forecasting
  • Meadow spittlebug
  • Olive quick decline syndrome
  • Pierce’s disease
  • Species distribution modeling

ASJC Scopus subject areas

  • Insect Science
  • Ecology, Evolution, Behavior and Systematics
  • Agronomy and Crop Science
  • Plant Science
  • Ecology


Dive into the research topics of 'Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa'. Together they form a unique fingerprint.

Cite this