Classifying relations via long short term memory networks along shortest dependency paths

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, Zhi Jin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pick up heterogeneous information along the SDP. Our proposed model has several distinct features: (1) The shortest dependency paths retain most relevant information (to relation classification), while eliminating irrelevant words in the sentence. (2) The multichannel LSTM networks allow effective information integration from heterogeneous sources over the dependency paths. (3) A customized dropout strategy regularizes the neural network to alleviate overfitting. We test our model on the SemEval 2010 relation classification task, and achieve an F1-score of 83.7%, higher than competing methods in the literature.

Original languageEnglish (US)
Title of host publicationConference Proceedings - EMNLP 2015
Subtitle of host publicationConference on Empirical Methods in Natural Language Processing
PublisherAssociation for Computational Linguistics (ACL)
Pages1785-1794
Number of pages10
ISBN (Electronic)9781941643327
DOIs
StatePublished - 2015
Externally publishedYes
EventConference on Empirical Methods in Natural Language Processing, EMNLP 2015 - Lisbon, Portugal
Duration: Sep 17 2015Sep 21 2015

Publication series

NameConference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing

Other

OtherConference on Empirical Methods in Natural Language Processing, EMNLP 2015
Country/TerritoryPortugal
CityLisbon
Period9/17/159/21/15

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Classifying relations via long short term memory networks along shortest dependency paths'. Together they form a unique fingerprint.

Cite this