Classification of software behaviors for failure detection: A discriminative pattern mining approach

David Lo, Hong Cheng, Jiawei Han, Siau Cheng Khoo, Chengnian Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Software is a ubiquitous component of our daily life. We often depend on the correct working of software systems. Due to the difficulty and complexity of software systems, bugs and anomalies are prevalent. Bugs have caused billions of dollars loss, in addition to privacy and security threats. In this work, we address software reliability issues by proposing a novel method to classify software behaviors based on past history or runs. With the technique, it is possible to generalize past known errors and mistakes to capture failures and anomalies. Our technique first mines a set of discriminative features capturing repetitive series of events from program execution traces. It then performs feature selection to select the best features for classification. These features are then used to train a classifier to detect failures. Experiments and case studies on traces of several benchmark software systems and a real-life concurrency bug from MySQL server show the utility of the technique in capturing failures and anomalies. On average, our pattern-based classification technique out-performs the baseline approach by 24.68% in accuracy 1.

Original languageEnglish (US)
Title of host publicationKDD '09
Subtitle of host publicationProceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Pages557-565
Number of pages9
DOIs
StatePublished - 2009
Event15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09 - Paris, France
Duration: Jun 28 2009Jul 1 2009

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Other

Other15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09
CountryFrance
CityParis
Period6/28/097/1/09

Keywords

  • Algorithms
  • Experimentation

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Classification of software behaviors for failure detection: A discriminative pattern mining approach'. Together they form a unique fingerprint.

Cite this