Classification of fall risk across the lifespan using gait derived features from a wearable device

Grainger Sasso, Lingxiao Mou, Manuel E. Hernandez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Falls are one of the leading factors of injury and fatality in older adults. Given the importance of early detection of adults at higher risk of falls, we evaluated the ability of machine learning to classify fall risk in adults across the lifespan using wearable sensors embedded in a smartshirt. We evaluated the classification performance of binary and multiclass fall risk classifier models using SciKit Digital Health in adults across the lifespan. Using a k-fold and group k-fold cross-validation strategy, we demonstrate the feasibility of fall risk classification using accelerometer data from 10 second epochs of treadmill walking data from adults across the lifespan. We achieved an 88% accuracy in a binary clasifier of fallers vs. non-fallers, and an 86% accuracy in a multiclass classifier comparing non-fallers, fallers, and recurrent fallers using retrospective fall histories. Comparing group k-fold vs. k-fold cross-validation strategies, we find a 22-27% drop-off in accuracy performance. Furthering the evaluation framework presented in this study would be valuable to the development of more robust and clinically relevant models used in the prediction of fall risk. These models could one day be applied in clinical settings to help better diagnose and monitor fall risk among older adults, improving the care of at-risk individuals and reducing the injury and associated cost of falls.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

Keywords

  • Classification
  • Fall risk
  • Gait
  • Wearables

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Classification of fall risk across the lifespan using gait derived features from a wearable device'. Together they form a unique fingerprint.

Cite this