Citation: A Key to Building Responsible and Accountable Large Language Models

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large Language Models (LLMs) bring trans-formative benefits alongside unique challenges, including intellectual property (IP) and ethical concerns. This position paper explores a novel angle to mitigate these risks, drawing parallels between LLMs and established web systems. We identify “citation”-the acknowledgement or reference to a source or evidence-as a crucial yet missing component in LLMs. Incorporating citation could enhance content transparency and verifiability, thereby confronting the IP and ethical issues in the deployment of LLMs. We further propose that a comprehensive citation mechanism for LLMs should account for both non-parametric and parametric content. Despite the complexity of implementing such a citation mechanism, along with the potential pitfalls, we advocate for its development. Building on this foundation, we outline several research problems in this area, aiming to guide future explorations towards building more responsible and accountable LLMs.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationNAACL 2024 - Findings
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages464-473
Number of pages10
ISBN (Electronic)9798891761193
DOIs
StatePublished - 2024
Event2024 Findings of the Association for Computational Linguistics: NAACL 2024 - Mexico City, Mexico
Duration: Jun 16 2024Jun 21 2024

Publication series

NameFindings of the Association for Computational Linguistics: NAACL 2024 - Findings

Conference

Conference2024 Findings of the Association for Computational Linguistics: NAACL 2024
Country/TerritoryMexico
CityMexico City
Period6/16/246/21/24

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software

Fingerprint

Dive into the research topics of 'Citation: A Key to Building Responsible and Accountable Large Language Models'. Together they form a unique fingerprint.

Cite this